Predicting immigrant performance: Does inbreeding have incremental validity over IQ and Islam?

So, she came up with:

So I decided to try it out, since I’m taking a break from reading Lilienfeld which I had been doing that for 5 hours straight or so.

So the question is whether inbreeding measures have incremental validity over IQ and Islam, which I have previously used to examine immigrant performance in a number of studies.

So, to get the data into R, I OCR’d the PDF in Abbyy FineReader since this program allows for easy copying of table data by row or column. I only wanted column 1-2 and didn’t want to deal with the hassle of importing it with spreadsheet problems (which need a consistent separator, e.g. comma or space). Then I merged it with the megadataset to create a new version, 2.0d.

Then I created a subset of the data with variables of interest, and renamed them (otherwise results would be unwieldy). Intercorrelations are:

row.names Cousin% CoefInbreed IQ Islam S.in.DK
1 Cousin% 1.00 0.52 -0.59 0.78 -0.76
2 CoefInbreed 0.52 1.00 -0.28 0.40 -0.55
3 IQ -0.59 -0.28 1.00 -0.27 0.54
4 Islam 0.78 0.40 -0.27 1.00 -0.71
5 S.in.DK -0.76 -0.55 0.54 -0.71 1.00

 

Spearman’ correlations, which are probably better due to the non-normal data:

row.names Cousin% CoefInbreed IQ Islam S.in.DK
1 Cousin% 1.00 0.91 -0.63 0.67 -0.73
2 CoefInbreed 0.91 1.00 -0.55 0.61 -0.76
3 IQ -0.63 -0.55 1.00 -0.23 0.72
4 Islam 0.67 0.61 -0.23 1.00 -0.61
5 S.in.DK -0.73 -0.76 0.72 -0.61 1.00

 

The fairly high correlations of inbreeding measures with IQ and Islam mean that their contribution will likely be modest as incremental validity.

However, let’s try modeling them. I create 7 models of interest and compile the primary measure of interest from them, R2 adjusted, into an object. Looks like this:

row.names R2 adj.
1 S.in.DK ~ IQ+Islam 0.5472850
2 S.in.DK ~ IQ+Islam+CousinPercent 0.6701305
3 S.in.DK ~ IQ+Islam+CoefInbreed 0.7489312
4 S.in.DK ~ Islam+CousinPercent 0.6776841
5 S.in.DK ~ Islam+CoefInbreed 0.7438711
6 S.in.DK ~ IQ+CousinPercent 0.5486674
7 S.in.DK ~ IQ+CoefInbreed 0.4979552

 

So we see that either of them adds a fair amount of incremental validity to the base model (line 1 vs. 2-3). They are in fact better than IQ if one substitutes them in (1 vs. 4-5). They can also substitute for Islam, but only with about the same predictive power (1 vs 6-7).

Replication for Norway

Replication for science is important. Let’s try Norwegian data. The Finnish and Dutch data are well-suited for this (too few immigrant groups, few outcome variables i.e. only crime)

Pearson intercorrelations:

row.names CousinPercent CoefInbreed IQ Islam S.in.NO
1 CousinPercent 1.00 0.52 -0.59 0.78 -0.78
2 CoefInbreed 0.52 1.00 -0.28 0.40 -0.46
3 IQ -0.59 -0.28 1.00 -0.27 0.60
4 Islam 0.78 0.40 -0.27 1.00 -0.72
5 S.in.NO -0.78 -0.46 0.60 -0.72 1.00

 

Spearman:

row.names CousinPercent CoefInbreed IQ Islam S.in.NO
1 CousinPercent 1.00 0.91 -0.63 0.67 -0.77
2 CoefInbreed 0.91 1.00 -0.55 0.61 -0.71
3 IQ -0.63 -0.55 1.00 -0.23 0.75
4 Islam 0.67 0.61 -0.23 1.00 -0.47
5 S.in.NO -0.77 -0.71 0.75 -0.47 1.00

 

These look fairly similar to Denmark.

And the regression results:

row.names R2 adj.
1 S.in.NO ~ IQ+Islam 0.5899682
2 S.in.NO ~ IQ+Islam+CousinPercent 0.7053999
3 S.in.NO ~ IQ+Islam+CoefInbreed 0.7077162
4 S.in.NO ~ Islam+CousinPercent 0.6826272
5 S.in.NO ~ Islam+CoefInbreed 0.6222364
6 S.in.NO ~ IQ+CousinPercent 0.6080922
7 S.in.NO ~ IQ+CoefInbreed 0.5460777

 

Fairly similar too. If added, they have incremental validity (line 1 vs. 2-3). They perform better than IQ if substituted but not as much as in the Danish data (1 vs. 4-5). They can also substitute for Islam (1 vs. 6-7).

How to interpret?

Since inbreeding does not seem to have any direct influence on behavior that is reflected in the S factor, it is not so easy to interpret these findings. Inbreeding leads to various health problems and lower g in offspring, the latter which may have some effect. However, presumably, national IQs already reflect the lowered IQ from inbreeding, so there should be no additional effect there beyond national IQs. Perhaps inbreeding results in other psychological problems that are relevant.

Another idea is that inbreeding rates reflect non-g psychological traits that are relevant to adapting to life in Denmark. Perhaps it is a useful measure of clanishness, would be reflected in hostility towards integration in Danish society (such as getting an education, or lack of sympathy/antipathy towards ethnic Danes and resulting higher crime rates against them), which would be reflected in the S factor.

The lack of relatively well established causal routes for interpreting the finding makes me somewhat cautious about how to interpret this.


 

##Code for mergining cousin marriage+inbreeding data with megadataset
inbreed = read.table("clipboard", sep="\t",header=TRUE, row.names=1) #load data from clipboard
source("merger.R") #load mega functions
mega20d = read.mega("Megadataset_v2.0d.csv") #load latest megadataset
names = as.abbrev(rownames(inbreed)) #get abbreviated names
rownames(inbreed) = names #set them as rownames

#merge and save
mega20e = merge.datasets(mega20d,inbreed,1) #merge to create v. 2.0e
write.mega(mega20e,"Megadataset_v2.0e.csv") #save it

#select subset of interesting data
dk.data = subset(mega20e, selec=c("Weighted.mean.consanguineous.percentage.HobenEtAl2010",
                                  "Weighted.mean.coefficient.of.inbreeding.HobenEtAl2010",
                                  "LV2012estimatedIQ",
                                  "IslamPewResearch2010",
                                  "S.factor.in.Denmark.Kirkegaard2014"))
colnames(dk.data) = c("CousinPercent","CoefInbreed","IQ","Islam","S.in.DK") #shorter var names
rcorr = rcorr(as.matrix(dk.data)) #correlation object
View(round(rcorr$r,2)) #view correlations, round to 2
rcorr.S = rcorr(as.matrix(dk.data),type = "spearman") #spearman correlation object
View(round(rcorr.S$r,2)) #view correlations, round to 2

#Multiple regression
library(QuantPsyc) #for beta coef
results = as.data.frame(matrix(data = NA, nrow=0, ncol = 1)) #empty matrix for results
colnames(results) = "R2 adj."
models = c("S.in.DK ~ IQ+Islam", #base model,
           "S.in.DK ~ IQ+Islam+CousinPercent", #1. inbreeding var
           "S.in.DK ~ IQ+Islam+CoefInbreed", #2. inbreeding var
           "S.in.DK ~ Islam+CousinPercent", #without IQ
           "S.in.DK ~ Islam+CoefInbreed", #without IQ
           "S.in.DK ~ IQ+CousinPercent", #without Islam
           "S.in.DK ~ IQ+CoefInbreed") #without Islam

for (model in models){ #run all the models
  fit.model = lm(model, dk.data) #fit model
  sum.stats = summary(fit.model) #summary stats object
  summary(fit.model) #summary stats
  lm.beta(fit.model) #standardized betas
  results[model,] = sum.stats$adj.r.squared #add result to results object
}
View(results) #view results

##Let's try Norway too
no.data = subset(mega20e, selec=c("Weighted.mean.consanguineous.percentage.HobenEtAl2010",
                                  "Weighted.mean.coefficient.of.inbreeding.HobenEtAl2010",
                                  "LV2012estimatedIQ",
                                  "IslamPewResearch2010",
                                  "S.factor.in.Norway.Kirkegaard2014"))

colnames(no.data) = c("CousinPercent","CoefInbreed","IQ","Islam","S.in.NO") #shorter var names
rcorr = rcorr(as.matrix(no.data)) #correlation object
View(round(rcorr$r,2)) #view correlations, round to 2
rcorr.S = rcorr(as.matrix(no.data),type = "spearman") #spearman correlation object
View(round(rcorr.S$r,2)) #view correlations, round to 2

results = as.data.frame(matrix(data = NA, nrow=0, ncol = 1)) #empty matrix for results
colnames(results) = "R2 adj."
models = c("S.in.NO ~ IQ+Islam", #base model,
           "S.in.NO ~ IQ+Islam+CousinPercent", #1. inbreeding var
           "S.in.NO ~ IQ+Islam+CoefInbreed", #2. inbreeding var
           "S.in.NO ~ Islam+CousinPercent", #without IQ
           "S.in.NO ~ Islam+CoefInbreed", #without IQ
           "S.in.NO ~ IQ+CousinPercent", #without Islam
           "S.in.NO ~ IQ+CoefInbreed") #without Islam

for (model in models){ #run all the models
  fit.model = lm(model, no.data) #fit model
  sum.stats = summary(fit.model) #summary stats object
  summary(fit.model) #summary stats
  lm.beta(fit.model) #standardized betas
  results[model,] = sum.stats$adj.r.squared #add result to results object
}
View(results) #view results

Intelligence, income inequality and prison rates: It’s complicated

There was some talk on Twitter around prison rates and inequality:

And IQ and inequality:

But then what about prison data beyond those given above? I have downloaded the newest data from here ICPS (rate data, not totals).

Now, what about all three variables?

#load mega20d as the datafile
ineqprisoniq = subset(mega20d, select=c("Fact1_inequality","LV2012estimatedIQ","PrisonRatePer100000ICPS2015"))
rcorr(as.matrix(ineqprisoniq),type = "spearman")
                            Fact1_inequality LV2012estimatedIQ PrisonRatePer100000ICPS2015
Fact1_inequality                        1.00             -0.51                        0.22
LV2012estimatedIQ                      -0.51              1.00                        0.16
PrisonRatePer100000ICPS2015             0.22              0.16                        1.00

n
                            Fact1_inequality LV2012estimatedIQ PrisonRatePer100000ICPS2015
Fact1_inequality                         275               119                         117
LV2012estimatedIQ                        119               275                         193
PrisonRatePer100000ICPS2015              117               193                         275

So IQ is slightly positively related to prison rates and so is equality. Positive? Isn’t it bad having people in prison? Well, if the alternative is having them dead… because the punishment for most crimes is death. Although one need not be excessive as the US is. Somewhere in the middle is perhaps best?

What if we combine them into a model?

model = lm(PrisonRatePer100000ICPS2015 ~ Fact1_inequality+LV2012estimatedIQ,ineqprisoniq)
summary = summary(model)
library(QuantPsyc)
lm.beta(model)
prediction = as.data.frame(predict(model))
colnames(prediction) = "Predicted"
ineqprisoniq = merge.datasets(ineqprisoniq,prediction,1)
scatterplot(PrisonRatePer100000ICPS2015 ~ Predicted, ineqprisoniq,
            smoother=FALSE,id.n=nrow(ineqprisoniq))
> summary

Call:
lm(formula = PrisonRatePer100000ICPS2015 ~ Fact1_inequality + 
    LV2012estimatedIQ, data = ineqprisoniq)

Residuals:
    Min      1Q  Median      3Q     Max 
-153.61  -75.05  -31.53   44.62  507.34 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)   
(Intercept)       -116.451     88.464  -1.316  0.19069   
Fact1_inequality    31.348     11.872   2.640  0.00944 **
LV2012estimatedIQ    3.227      1.027   3.142  0.00214 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 113.6 on 114 degrees of freedom
  (158 observations deleted due to missingness)
Multiple R-squared:  0.09434,	Adjusted R-squared:  0.07845 
F-statistic: 5.938 on 2 and 114 DF,  p-value: 0.003523

> lm.beta(model)
Fact1_inequality LV2012estimatedIQ 
        0.2613563         0.3110241

This is a pretty bad model (var%=8), but the directions held from before but were stronger. Standardized betas .25-.31. The R2 seems to be awkwardly low to me given the betas.

More importantly, the residuals are clearly not normal as can be seen above. The QQ-plot is:

QQ_plot

It is concave, so data distribution isn’t normal. To get diagnostic plots, simply use “plot(model)”.

Perhaps try using rank-order data:

ineqprisoniq = as.data.frame(apply(ineqprisoniq,2,rank,na.last="keep")) #rank order the data

And then rerunning model gives:

> summary

Call:
lm(formula = PrisonRatePer100000ICPS2015 ~ Fact1_inequality + 
    LV2012estimatedIQ, data = ineqprisoniq)

Residuals:
     Min       1Q   Median       3Q      Max 
-100.236  -46.753   -8.507   46.986  125.211 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        1.08557   18.32052   0.059    0.953    
Fact1_inequality   0.84766    0.16822   5.039 1.78e-06 ***
LV2012estimatedIQ  0.50094    0.09494   5.276 6.35e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 54.36 on 114 degrees of freedom
  (158 observations deleted due to missingness)
Multiple R-squared:  0.2376,	Adjusted R-squared:  0.2242 
F-statistic: 17.76 on 2 and 114 DF,  p-value: 1.924e-07

> lm.beta(model)
 Fact1_inequality LV2012estimatedIQ 
        0.4757562         0.4981808

Much better R2, directions the same but betas are stronger, and residuals look normalish from the above. QQ plot shows them not to be even now.

QQplot2

Prediction plots based off the models:

prison prison_rank

So is something strange going on with the IQ, inequality and prison rates? Perhaps something nonlinear. Let’s plot them by IQ bins:

bins = cut(unlist(ineqprisoniq["LV2012estimatedIQ"]),5) #divide IQs into 5 bins
ineqprisoniq["IQ.bins"] = bins
describeBy(ineqprisoniq["PrisonRatePer100000ICPS2015"],bins)
library(gplots)
plotmeans(PrisonRatePer100000ICPS2015 ~ IQ.bins, ineqprisoniq,
          main = "Prison rate by national IQ bins",
          xlab = "IQ bins (2012 data)", ylab = "Prison rate per 100000 (2014 data)")

prison_IQ_bins

That looks like “bingo!” to me. We found the pattern.

What about inequality? The trouble is that the inequality data is horribly skewed with almost all countries have a low and near identical inequality compared with the extremes. The above will (does not) work well. I tried with different bins numbers too. Results look something like this:

bins = cut(unlist(ineqprisoniq["Fact1_inequality"]),5) #divide IQs into 5 bins
ineqprisoniq["inequality.bins"] = bins
plotmeans(PrisonRatePer100000ICPS2015 ~ inequality.bins, ineqprisoniq,
          main = "Prison rate by national inequality bins",
          xlab = "inequality bins", ylab = "Prison rate per 100000 (2014 data)")

prison_inequality

So basically, the most equal countries to the left have low rates, somewhat higher in the unequal countries within the main group and varying and on average lowish among the very unequal countries (African countries without much infrastructure?).

Perhaps this is why the Equality Institute limited their analyses to the group on the left, otherwise they don’t get the nice clear pattern they want. One can see it a little bit if one uses a high number of bins and ignores the groups to the right. E.g. 10 bins:

prison_inequality_10bins

Among the 3 first groups, there is a slight upward trend.

Review: Race (John Baker)

www.goodreads.com/book/show/875481.Race

gen.lib.rus.ec/book/index.php?md5=5624936a816b96dd3e6a4af6808ee69b

I had seen references to this book in a number of places which got me curious. I am somewhat hesitant to read older books since I know much of what they discuss is dated and has been superseded by newer science. Sometimes, however, science (or the science culture) has gone wrong so one may actually learn more reading an older book than a newer one. Since fewer people read older books, one can sometimes find relevant but forgotten facts in them. Lastly, they can provide much needed historical information about the development of thinking about some idea or of some field. All of these remarks are arguably relevant to the race/population genetics controversy.

Still, I did not read the book immediately altho I had a PDF of it. I ended up starting to read it more or less at random due to a short talk I had with John Fuerst about it (we are writing together on racial admixture, intelligence and socioeconomic outcomes in the Americas and also wrote a paper on immigrant performance in Denmark).

So, the book really is dated. It spends hundreds of pages on arcane fysical anthropology which requires one to master human anatomy. Most readers don’t master this discipline, so these parts of the book are virtually un-understandable. However, they do provide one with the distinct impression of how one did fysical anthropology in old times. Lots of observations of cranium, other bones, noses, eyes+lids, teeth, lips, buttocks, etc., and then try to find clusters in these data manually. No wonder they did not reach that high agreement. The data are too scarce to find clusters and humans not sufficiently good at cluster analysis at the intuitive level. Still, they did notice some patterns that are surely correct, such as the division between various African populations, Ainu vs. Japanese, that Europeans are Asians are closer related, that Afghans etc. belong to the European supercluster etc. Clearly, these pre-genetic ideas were not all totally wrong headed. Here’s the table of Races+Subraces from the end of the book. They seem reasonably in line with modern evidence.

table

Some quotes:

The story of 7 ‘kinds’ of mosquitoes.

[Dobzhansky’s definition = ‘Species in sexual cross-fertilizing organisms can be defined as groups of populations which are reproductively isolated to the extent that the exchange of genes between them is absent or so slow that the genetic differences are not diminished or swamped.’]

Strict application of Dobzhansky’s definition results in certain very similar animals being assigned to different species. The malarial mosquitoes and their relatives provide a remarkable example of this. The facts are not only extreme­ly interesting from the purely scientific point of view, but also of great practical importance in the maintenance of public health in malarious districts. It was discovered in 1920 that one kind of the genus Anopheles, called elutus, could be distinguished from the well-known malarial mosquito, A. maculipennis, by certain minute differences in the adult, and by the fact that its its eggs looked different; but for our detailed knowledge of this subject we are mainly indebted to one Falleroni, a retired inspector of public health in Italy, who began in 1924 to breed Anopheles mosquitoes as a hobby. He noticed that several different kinds of eggs could be distinguished, that the same female always laid eggs having the same appearance, and that adult females derived from those eggs produced eggs of the same type. He realized that although the adults all appeared similar, there were in fact several different kinds, which he could recognize by the markings on their eggs. Falleroni named several different kinds after his friends, and the names he gave are the accepted ones today in scientific nomenclature.

It was not until 1931 that the matter came to the attention of L. W. Hackett, who, with A. Missiroli, did more than anyone else to unravel the details of this curious story.(449,447.448] The facts are these. There are in Europe six different kinds of Anopheles that cannot be distinguished with certainty from one another in the adult state, however carefully they are examined under the microscope by experts; a seventh kind, elutus, can be distinguished by minor differences if its age is known. The larvae of two of the kinds can be distinguished from one another by minute differences (in the type of palmate hair on the second segment, taken in conjunction with the number of branches of hair no. 2 on the fourth and fifth segments). Other supposed differences between the kinds, apart from those in the eggs, have been shown to be unreal.

In nature the seven kinds are not known to interbreed, and it is therefore necessary, under Dobzhansky’s definition, to regard them all as separate species.

The mates of six of the seven species have the habit of ‘swarming’ when ready to copulate. They join in groups of many individuals, humming, high in the air; suddenly the swarm bursts asunder and rejoins. The females recognize the swarms of males of their own species, and are attracted towards them. Each female dashes in, seizes a male, and flies off, copulating.

With the exceptions mentioned, the only visible differences between the species occur at the egg-stage. The eggs of six of the seven species are shown in Fig. 8 (p. 76).

6 anopheles

It will be noticed that each egg is roughly sausage-shaped, with an air-filled float at each side, which supports it in the water in which it is laid. The eggs of the different species are seen to differ in the length and position of the floats. The surface of the rest of the egg is covered all over with microscopic finger-shaped papillae, standing up like the pile of a carpet. It is these papillae that are responsible for the distinctive patterns seen on the eggs of the different species. Where the papillae are long and their tips rough, light is reflected to give a whitish appearance; where they are short and smooth, light passes through to reveal the underlying surface of the egg, which is black. The biological significance of these apparently trivial differences is unknown.

From the point of view of the ethnic problem the most interesting fact is this. Although the visible differences between the species are trivial and confined or almost confined to the egg-stage, it is evident that the nervous and sensory systems are different, for each species has its own habits. The males of one species (atroparvus) do not swarm. It has already been mentioned that the females recognize the males of their own species. Some of the species lay their eggs in fresh water, others in brackish. The females of some species suck the blood of cattle, and are harmless to man; those of other species suck the blood of man, and in injecting their saliva transmit malaria to him.

Examples could be quoted of other species that are distinguishable from one another by morphological differences no greater than those that separate the species of Anopheles; but the races of a single species—indeed, the subraces of a single race—are often distinguished from one another, in their typical forms, by obvious differences, affecting many parts of the body. It is not the case that species are necessarily very distinct, and races very similar. [p. 74ff]

Nature is very odd indeed! More on Wiki.

Some very strange examples of abnormalities of this sort have been recorded by reputable authorities. Buffon quotes two examples of an ‘amour violent’ between a dog and a sow. In one case the dog was a large spaniel on the property of the Comte de Feuillee, in Burgundy. Many persons witnessed ‘the mutual ardour of these two animals; the dog even made prodigious and oft-repeated efforts to copulate with the sow, but the unsuitability of their reproductive organs prevented their union.’ Another example, still more remarkable, occurred on Buffon’s own property. A miller kept a mare and a bull in the same stable. These two animals developed such a passion for one another that on all occasions when the mare was on heat, over a period of several years, the bull copulated with her three or four times a day, whenever he was free to do so. The act was witnessed by all the inhabitants of the place. [p. 92]

Of smelly Japanese:

There is, naturally enough, a correlation between the development of the axillary organ and the smelliness of the secretion of this gland (and probably this applies also to the a glands of the genito-anal region). Briefly, the Europids and Negrids are smelly, the Mongolids scarcely or not at all. so far as the axillary secretion is concerned. Adachi. who has devoted more study to this subject than anyone else, has summed up his findings in a single, short sentence: ‘The Mongolids are essentially an odourless or very slightly smelly race with dry ear-wax.’(5] Since most of the Japanese are free or almost free from axillary smell, they are very sensitive to its presence, of which they seem to have a horror. About 10% of Japanese have smelly axillae. This is attributed to remote Ainuid ancestry, since the Ainu are invariably smelly, like most other Europids, and a tendency to smelliness is known to be inherited among the Japanese. 151 The existence of the odour is regarded among Japanese as a disease, osmidrosis axillae which warrants (or used to warrant) exemption from military service. Certain doctors specialize in its treatment, and sufferers are accustomed to enter hospital. [p. 173]

Japan always take these things to a new level.

Measurements of adult stature, made on several thousand pairs of persons, show a rather close correspondence with these figures, namely, 0 507, 0-322, 0-543, and 0-287 respectively.(172) It will be noticed that the correlations are all somewhat higher than one would expect; that is to say, the members of each pair are, on average, rather more nearly of the same height than the simple theory would suggest. This is attributed in the main to the tendency towards assortative mating, the reality of which had already been recognized by Karl Pearson and Miss Lee in their paper published in 1903. [p. 462]

I didn’t know assortative mating was recognized so far back. This may be a good source to understand the historical development of understanding of assortative mating.

The reference is: Pearson, K. &  Lee,  A.,  1903.  ‘On  the  laws  of  inheritance  in  man.  I.  Inheritance  of  physical characters.’  Biometrika,  2, 357—462.

Definition of intelligence?

What has been said on p. 496 may now be rewritten in the form of a short definition of intelligence, in the straightforward, everyday sense of that word. It is the ability to perceive, comprehend, and reason, combined with the capacity to choose worth-while subjects for study, eagerness to acquire, use, transmit, and (if possible) add to knowledge and understanding, and the faculty for sustained effort towards these ends (cf. p. 438). One might say briefly that a person is intelligent in so far as his cognitive ability and personality tend towards productiveness through mental activity. [p. 495ff]

Baker prefers a broader definition of “intelligence” which includes certain non-cognitive parts. He uses “cognitive ability” like many people do now a days use “general cognitive ability”.

And now surely at the end of the book, the evil master-racist privileged white male John Baker tells us what to do with the information we just learned in the book:

Here, on reaching the end of the book, 1 must repeat some words that I wrote years ago when drafting the Introduction (p. 6), for there is nothing in the whole work that would tend to contradict or weaken them:
Every ethnic taxon of man includes many persons capable of living responsible and useful lives in the communities to which they belong, while even in those taxa that are best known for their contributions to the world’s store of intellectual wealth, there are many so mentally deficient that they would be inadequate members of any society. It follows that no one can claim superiority simply because he or she belongs to a particular ethnic taxon. [p. 534]

So, clearly according to our anti-racist heroes, Baker tells us to revel in our (sorry Jayman if you are reading!) European master ancestry, right?

edited: removed joke because public image -_-

Review: The Roma: A Balkan Underclass (Jelena Cvorovic)

www.goodreads.com/book/show/23621169-the-roma

Richard Lynn is so nice to periodically send me books for free. He is working on establishing his publisher, of course, and so needs media coverage.

In this case, he sent me a new book on the Roma by Jelena Cvorovic who was also present at the London conference on intelligence in the spring 2014. She has previously published a number of papers on the Roma from her field studies. Of most interest to differential psychologists (such as me), is that they obtain very low scores on g tests not generally seen outside SS Africa. In the book, she reviews much of the literature on the Roma, covering their history, migration in Europe, religious beliefs and other strange cultural beliefs. For instance, did you know that many Roma consider themselves ‘Egyptians’? Very odd! Her review also covers the more traditional stuff like medical problems, sociological conditions, crime rates and the like. Generally, they do very poorly, probably only on par with the very worst performing immigrant groups in Scandinavia (Somalia, Lebanese, Syrians and similar). Perhaps they are part of the reason why people from Serbia do so poorly in Denmark. Perhaps they are mostly Roma? There are no records of more specific ethnicities in Denmark for immigrant groups to my knowledge. Similar puzzles concern immigrants coded as “stateless” which are presumably mostly from Palestine, immigrants from Israel (perhaps mostly Muslims?) and reversely immigrants from South Africa (perhaps mostly Europeans?).

Another interesting part of the book concerns the next last chapter covering the Roma kings. I had never heard of these, but apparently there are or were a few very rich Romas. They built elaborate castles for their money which one can now see in various places in Eastern Europe. After they lost their income (which was due to black market trading during communism and similar activities), they seem to have reverted to the normal Roma pattern of unemployment, fast life style, crime and state benefits. This provides another illustration of the idea that if a group of persons for some reason acquire wealth, it will not generally boost their g or other capabilities, and their wealth will go away again once the particular circumstance that gave rise to it disappears. Other examples of this pattern are the story of Nauru and people who get rich from sports but are not very clever (e.g. African American athletes such as Mike Tyson). Oil States have also not seen any massive increase in g due to their oil riches nor are people who win lotteries known to suddenly acquire higher g. Clearly, there cannot be a strong causal link from income to g.

In general, this book was better than expected and definitely worth a read for those interesting in psychologically informed history.

Meisenberg’s new book chapter on intelligence, economics and other stuff

G.M. IQ & Economic growth

I noted down some comments while reading it.

In Table 1, Dominican birth cohort is reversed.

 

“0.70 and 0.80 in world-wide country samples. Figure 1 gives an impression of

this relationship.”

 

Figure 1 shows regional IQs, not GDP relationships.

“We still depend on these descriptive methods of quantitative genetics because

only a small proportion of individual variation in general intelligence and

school achievement can be explained by known genetic polymorphisms (e.g.,

Piffer, 2013a,b; Rietveld et al, 2013).”

 

We don’t. Modern BG studies can confirm A^2 estimates directly from the genes.

E.g.:

Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., … & Deary, I. J. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular psychiatry, 16(10), 996-1005.

Marioni, R. E., Davies, G., Hayward, C., Liewald, D., Kerr, S. M., Campbell, A., … & Deary, I. J. (2014). Molecular genetic contributions to socioeconomic status and intelligence. Intelligence, 44, 26-32.

Results are fairly low tho, in the 20’s, presumably due to non-additive heritability and rarer genes.

 

“Even in modern societies, the heritability of

intelligence tends to be higher for children from higher socioeconomic status

(SES) families (Turkheimer et al, 2003; cf. Nagoshi and Johnson, 2005; van

der Sluis et al, 2008). Where this is observed, most likely environmental

conditions are of similar high quality for most high-SES children but are more

variable for low-SES children. “

 

Or maybe not. There are also big studies that don’t find this interaction effect. en.wikipedia.org/wiki/Heritability_of_IQ#Heritability_and_socioeconomic_status

 

“Schooling has

only a marginal effect on growth when intelligence is included, consistent with

earlier results by Weede & Kämpf (2002) and Ram (2007).”

In the regression model of all countries, schooling has a larger beta than IQ does (.158 and .125). But these appear to be unstandardized values, so they are not readily comparable.

“Also, earlier studies that took account of

earnings and cognitive test scores of migrants in the host country or IQs in

wealthy oil countries have concluded that there is a substantial causal effect of

IQ on earnings and productivity (Christainsen, 2013; Jones & Schneider,

2010)”

 

National IQs were also found to predict migrant income, as well as most other socioeconomic traits, in Denmark and Norway (and Finland and the Netherland).

Kirkegaard, E. O. W. (2014). Crime, income, educational attainment and employment among immigrant groups in Norway and Finland. Open Differential Psychology.

Kirkegaard, E. O. W., & Fuerst, J. (2014). Educational attainment, income, use of social benefits, crime rate and the general socioeconomic factor among 71 immigrant groups in Denmark. Open Differential Psychology.

 

 

Figures 3 A-C are of too low quality.

 

 

“Allocation of capital resources has been an

element of classical growth theory (Solow, 1956). Human capital theory

emphasizes that individuals with higher intelligence tend to have lower

impulsivity and lower time preference (Shamosh & Gray, 2008). This is

predicted to lead to higher savings rates and greater resource allocation to

investment relative to consumption in countries with higher average

intelligence.”

 

Time preference data for 45 countries are given by:

Wang, M., Rieger, M. O., & Hens, T. (2011). How time preferences differ: evidence from 45 countries.

They are in the megadataset from version 1.7f

Correlations among some variables of interest:

r
             SlowTimePref Income.in.DK Income.in.NO   IQ lgGDP
SlowTimePref         1.00         0.45         0.48 0.57  0.64
Income.in.DK         0.45         1.00         0.89 0.55  0.59
Income.in.NO         0.48         0.89         1.00 0.65  0.66
IQ                   0.57         0.55         0.65 1.00  0.72
lgGDP                0.64         0.59         0.66 0.72  1.00

n
             SlowTimePref Income.in.DK Income.in.NO  IQ lgGDP
SlowTimePref          273           32           12  45    40
Income.in.DK           32          273           20  68    58
Income.in.NO           12           20          273  23    20
IQ                     45           68           23 273   169
lgGDP                  40           58           20 169   273

So time prefs predict income in DK and NO only slightly worse than national IQs or lgGDP.

 

 

“Another possible mediator of intelligence effects that is difficult to

measure at the country level is the willingness and ability to cooperate. A

review by Jones (2008) shows that cooperativeness, measured in the Prisoner‟s

dilemma game, is positively related to intelligence. This correlate of

intelligence may explain some of the relationship of intelligence with

governance. Other likely mediators of the intelligence effect include less red

tape and restrictions on economic activities (“economic freedom”), higher

savings and/or investment, and technology adoption in developing countries.”

 

There are data for IQ and trust too. Presumably trust is closely related to willingness to cooperate.

Carl, N. (2014). Does intelligence explain the association between generalized trust and economic development? Intelligence, 47, 83–92. doi:10.1016/j.intell.2014.08.008

 

 

“There is no psychometric evidence for rising intelligence before that time

because IQ tests were introduced only during the first decade of the 20th

century, but literacy rates were rising steadily after the end of the Middle Age

in all European countries for which we have evidence (Mitch, 1992; Stone,

1969), and the number of books printed per capita kept rising (Baten & van

Zanden, 2008).”

 

There’s also age heaping scores which are a crude measure of numeracy. AH scores for 1800 to 1970 are in the megadataset. They have been going up for centuries too just like literacy scores. See:

A’Hearn, B., Baten, J., & Crayen, D. (2009). Quantifying quantitative literacy: Age heaping and the history of human capital. The Journal of Economic History, 69(03), 783–808.

 

 

“Why did this spiral of economic and cognitive growth take off in Europe

rather than somewhere else, and why did it not happen earlier, for example in

classical Athens or the Roman Empire? One part of the answer is that this

process can start only when technologies are already in place to translate rising

economic output into rising intelligence. The minimal requirements are a

writing system that is simple enough to be learned by everyone without undue

effort, and a means to produce and disseminate written materials: paper, and

the printing press. The first requirement had been present in Europe and the

Middle East (but not China) since antiquity, and the second was in place in

Europe from the 15thcentury. The Arabs had learned both paper-making and

printing from the Chinese in the 13thcentury (Carter, 1955), but showed little

interest in books. Their civilization was entering into terminal decline at about

that time (Huff, 1993). “

 

Are there no FLynn effects in China? They still have a difficult writing system.

 

“Most important is that Flynn effect gains have been decelerating in recent

years. Recent losses (anti-Flynn effects) were noted in Britain, Denmark,

Norway and Finland. Results for the Scandinavian countries are based on

comprehensive IQ testing of military conscripts aged 18-19. Evidence for

losses among British teenagers is derived from the Raven test (Flynn, 2009)

and Piagetian tests (Shayer & Ginsburg, 2009). These observations suggest

that for cohorts born after about 1980, the Flynn effect is ending or has ended

in many and perhaps most of the economically most advanced countries.

Messages from the United States are mixed, with some studies reporting

continuing gains (Flynn, 2012) and others no change (Beaujean & Osterlind,

2008).”

 

These are confounded with immigration of low-g migrants however. Maybe the FLynn effect is still there, just being masked by dysgenics + low-g immigration.

 

 

“The unsustainability of this situation is obvious. Estimating that one third

of the present IQ differences between countries can be attributed to genetics,

and adding this to the consequences of dysgenic fertility within countries,

leaves us with a genetic decline of between 1 and 2 IQ points per generation

for the entire world population. This decline is still more than offset by Flynn

effects in less developed countries, and the average IQ of the world‟s

population is still rising. This phase of history will end when today‟s

developing countries reach the end of the Flynn effect. “Peak IQ” can

reasonably be expected in cohorts born around the mid-21stcentury. The

assumptions of the peak IQ prediction are that (1) Flynn effects are limited by

genetic endowments, (2) some countries are approaching their genetic limits

already, and others will fiollow, and (3) today‟s patterns of differential fertility

favoring the less intelligent will persist into the foreseeable future. “

 

It is possible that embryo selection for higher g will kick in and change this.

Shulman, C., & Bostrom, N. (2014). Embryo Selection for Cognitive Enhancement: Curiosity or Game-changer? Global Policy, 5(1), 85–92. doi:10.1111/1758-5899.12123

 

 

“Fertility differentials between countries lead to replacement migration: the

movement of people from high-fertility countries to low-fertility countries,

with gradual replacement of the native populations in the low-fertility

countries (Coleman, 2002). The economic consequences depend on the

quality of the migrants and their descendants. Educational, cognitive and

economic outcomes of migrants are influenced heavily by prevailing

educational, cognitive and economic levels in the country of origin (Carabaña,

2011; Kirkegaard, 2013; Levels & Dronkers, 2008), and by the selectivity of

migration. Brain drain from poor to prosperous countries is extensive already,

for example among scientists (Franzoni, Scellato & Stephan, 2012; Hunter,

Oswald & Charlton, 2009). “

 

There are quite a few more papers on the spatial transferability hypothesis. I have 5 papers on this alone in ODP: openpsych.net/ODP/tag/country-of-origin/

But there’s also yet unpublished data for crime in Netherlands and more crime data for Norway. Papers based off these data are on their way.

 

International general factor of personality? yes, but…

I merged the dataset from Schmitt et al (2007)’s paper about OCEAN traits in 56 countries with the rest of the megadataset. Then i extracted the first factor of the OCEAN means and SDs. These two are nearly uncorrelated (.07). As for factor strength, they are not too bad:

> DF.OCEAN.mean.omega
Omega 
Call: omega(m = DF.OCEAN.mean)
Alpha:                 0.73 
G.6:                   0.74 
Omega Hierarchical:    0.54 
Omega H asymptotic:    0.64 
Omega Total            0.84 

Schmid Leiman Factor loadings greater than  0.2 
                                        g   F1*   F2*   F3*   h2   u2   p2
ExtraversionMeanSchmittEtAl2007      0.44        0.66       0.64 0.36 0.30
AgreeablenessMeanSchmittEtAl2007     0.58  0.56             0.66 0.34 0.51
ConscientiousnessMeanSchmittEtAl2007 0.62  0.52             0.66 0.34 0.58
NeuroticismMeanSchmittEtAl2007      -0.66  0.28  0.36 -0.36 0.76 0.24 0.56
OpennessMeanSchmittEtAl2007          0.23        0.21  0.51 0.38 0.62 0.14

With eigenvalues of:
   g  F1*  F2*  F3* 
1.40 0.69 0.62 0.40 

general/max  2.04   max/min =   1.7
mean percent general =  0.42    with sd =  0.19 and cv of  0.46 
Explained Common Variance of the general factor =  0.45

 

and

> DF.OCEAN.SD.omega
Omega 
Call: omega(m = DF.OCEAN.SD)
Alpha:                 0.79 
G.6:                   0.78 
Omega Hierarchical:    0.72 
Omega H asymptotic:    0.86 
Omega Total            0.84 

Schmid Leiman Factor loadings greater than  0.2 
                                      g   F1*   F2*   F3*   h2   u2   p2
ExtraversionSDSchmittEtAl2007      0.80                   0.64 0.36 0.99
AgreeablenessSDSchmittEtAl2007     0.57        0.47       0.55 0.45 0.59
ConscientiousnessSDSchmittEtAl2007 0.57  0.35             0.48 0.52 0.68
NeuroticismSDSchmittEtAl2007       0.78  0.52             0.87 0.13 0.69
OpennessSDSchmittEtAl2007          0.43        0.24       0.25 0.75 0.74

With eigenvalues of:
   g  F1*  F2*  F3* 
2.08 0.41 0.31 0.00 

general/max  5.09   max/min =   136.11
mean percent general =  0.74    with sd =  0.15 and cv of  0.2 
Explained Common Variance of the general factor =  0.74

 

Compare with values in Table 5 in my just published paper. GFP-mean is clearly weaker than g factor at individual level, GFP-SD is about the same.

Dataset
Var% MR
Var% MR SL Omega h. Omega h. a. ECV R2
NO Complete cases 0.68 0.65 0.87 0.91 0.78 0.98
NO Impute 1 0.66 0.62 0.86 0.9 0.74 0.96
NO Impute 2 0.64 0.6 0.85 0.89 0.75 0.95
NO Impute 3 0.63 0.59 0.82 0.87 0.73 0.99
DK complete cases 0.57 0.51 0.83 0.85 0.68 0.99
DK impute 4 0.55 0.51 0.86 0.88 0.73 0.99
Int. S. Factor 0.43 0.35 0.76 0.77 0.51 0.81
Cognitive data 0.33 0.74 0.79 0.57 0.78
Personality data 0.16 0.37 0.48 0.34 0.41

Then i correlated these with national IQ, S factor and local S factors in Norway and Denmark.

> round(cor(DF.OCEAN.general.scores,use="pairwise.complete.obs"),2)
             GFP.mean GFP.SD S.in.Norway S.in.Denmark Islam S.Int    IQ
GFP.mean         1.00   0.07        0.09        -0.25  0.17 -0.21 -0.58
GFP.SD           0.07   1.00        0.39         0.26 -0.14  0.36  0.24
S.in.Norway      0.09   0.39        1.00         0.78 -0.72  0.73  0.60
S.in.Denmark    -0.25   0.26        0.78         1.00 -0.71  0.54  0.54
Islam            0.17  -0.14       -0.72        -0.71  1.00 -0.33 -0.27
S.Int           -0.21   0.36        0.73         0.54 -0.33  1.00  0.86
IQ              -0.58   0.24        0.60         0.54 -0.27  0.86  1.00

So strangely, the correlation of GFP-mean x national IQ is very negative. It correlates weakly with S factors. Let’s try partialing out national IQ:

> DF.OCEAN.general.scores.no.IQ = partial.r(DF.OCEAN.general.scores,c(1:6),7)
> DF.OCEAN.general.scores.no.IQ
partial correlations 
             GFP.mean GFP.SD S.in.Norway S.in.Denmark Islam S.Int
GFP.mean         1.00   0.26        0.68         0.09  0.02  0.72
GFP.SD           0.26   1.00        0.31         0.16 -0.08  0.32
S.in.Norway      0.68   0.31        1.00         0.67 -0.73  0.53
S.in.Denmark     0.09   0.16        0.67         1.00 -0.70  0.19
Islam            0.02  -0.08       -0.73        -0.70  1.00 -0.21
S.Int            0.72   0.32        0.53         0.19 -0.21  1.00

Even more strange. GFP-mean strongly correlates with 2 S factors, but not the one in Denmark. The Danish data are very good (25 variables) and so are the international data (42-54 variables). And all the S factors correlate strongly before partialing (.78, .73, .54) but mixed after removing IQ (.67, .53, .19). Again Denmark is odd. For GFP-SD, it is similar, but weaker (before: .39, .26, .36; after: .31, .16, .32).

What to make of this? So i emailed some colleagues:

Dear [NAMES]

Do you know if someone have looked at an international general factor of personality? Because I did it just now using a dataset of OCEAN trait scores (big five) from Schmitt et al 2007. There is indeed an international GFP in the data. It correlates negatively with national IQs (-.58). Strangely, partialing out national IQs, it correlates highly with general socioeconomic factors in Norway (.68) and internationally (.72), but not in Denmark (.09). Strange? Thoughts? I can send you the data+code if you like.

Regards,
Emil

One of them had insider info:

Emil,

There is a paper about to appear in Intelligence in which an international GFP has been computed and analyzed.

Best,

[NAME].
So i publish this here quickly so i establish priority and independence.

What about OCEAN traits themselves?

(sorry, tables apparently not easy to make smaller)
All correlations:
E mean E SD A mean A SD C mean C SD N mean N SD O mean O SD Mean SD S.NO S.DK Islam Int.S IQ
E mean 1 0.14 0.2 0.22 0.25 0.23 -0.49 0.17 0.27 0.09 0.23 0.06 -0.19 -0.02 0.09 -0.02
E sd 0.14 1 -0.08 0.47 -0.07 0.48 0.13 0.66 0.3 0.34 0.81 0.45 0.35 -0.35 0.53 0.39
A mean 0.2 -0.08 1 0.15 0.65 0.21 -0.48 0.21 0.26 -0.13 0.11 0.08 -0.26 0.26 -0.25 -0.53
A SD 0.22 0.47 0.15 1 0.23 0.43 0 0.45 0.22 0.35 0.71 0.18 0.23 -0.18 0.12 -0.04
C mean 0.25 -0.07 0.65 0.23 1 0.1 -0.57 0.07 0.2 -0.03 0.07 0.04 -0.19 0.14 -0.19 -0.6
C SD 0.23 0.48 0.21 0.43 0.1 1 0.11 0.62 0.41 0.25 0.78 0.34 -0.03 0.04 0.19 0.04
N mean -0.49 0.13 -0.48 0 -0.57 0.11 1 0.22 -0.09 0.25 0.19 -0.1 0.13 -0.06 0.12 0.38
N SD 0.17 0.66 0.21 0.45 0.07 0.62 0.22 1 0.41 0.28 0.83 0.23 0.19 0 0.24 0.18
O mean 0.27 0.3 0.26 0.22 0.2 0.41 -0.09 0.41 1 0.07 0.4 -0.01 -0.07 0.04 -0.02 -0.06
O sd 0.09 0.34 -0.13 0.35 -0.03 0.25 0.25 0.28 0.07 1 0.56 0.22 0.14 -0.07 0.25 0.37
Mean SD 0.23 0.81 0.11 0.71 0.07 0.78 0.19 0.83 0.4 0.56 1 0.41 0.25 -0.15 0.36 0.25
S.factor.in.Norway 0.06 0.45 0.08 0.18 0.04 0.34 -0.1 0.23 -0.01 0.22 0.41 1 0.78 -0.72 0.73 0.6
S.factor.in.Denmark -0.19 0.35 -0.26 0.23 -0.19 -0.03 0.13 0.19 -0.07 0.14 0.25 0.78 1 -0.71 0.54 0.54
IslamPewResearch2010 -0.02 -0.35 0.26 -0.18 0.14 0.04 -0.06 0 0.04 -0.07 -0.15 -0.72 -0.71 1 -0.33 -0.27
International.S.Factor 0.09 0.53 -0.25 0.12 -0.19 0.19 0.12 0.24 -0.02 0.25 0.36 0.73 0.54 -0.33 1 0.86
LV2012estimatedIQ -0.02 0.39 -0.53 -0.04 -0.6 0.04 0.38 0.18 -0.06 0.37 0.25 0.6 0.54 -0.27 0.86 1
With IQ partialed out:
E mean E sd A mean A SD C mean C SD N mean N SD O mean O SD Mean SD S.NO S.DK Islam Int.S
E mean 1 0.17 0.22 0.22 0.3 0.23 -0.52 0.18 0.27 0.1 0.24 0.09 -0.21 -0.02 0.21
E sd 0.17 1 0.16 0.53 0.22 0.51 -0.02 0.65 0.35 0.23 0.8 0.29 0.18 -0.28 0.42
A mean 0.22 0.16 1 0.15 0.49 0.28 -0.36 0.36 0.27 0.07 0.29 0.58 0.03 0.15 0.48
A SD 0.22 0.53 0.15 1 0.25 0.43 0.02 0.47 0.21 0.4 0.74 0.26 0.3 -0.2 0.3
C mean 0.3 0.22 0.49 0.25 1 0.15 -0.46 0.23 0.21 0.25 0.29 0.63 0.2 -0.02 0.82
C SD 0.23 0.51 0.28 0.43 0.15 1 0.1 0.62 0.41 0.26 0.79 0.39 -0.05 0.06 0.31
N mean -0.52 -0.02 -0.36 0.02 -0.46 0.1 1 0.17 -0.07 0.13 0.11 -0.45 -0.1 0.05 -0.44
N SD 0.18 0.65 0.36 0.47 0.23 0.62 0.17 1 0.43 0.23 0.83 0.16 0.11 0.05 0.18
O mean 0.27 0.35 0.27 0.21 0.21 0.41 -0.07 0.43 1 0.1 0.42 0.03 -0.04 0.03 0.06
O sd 0.1 0.23 0.07 0.4 0.25 0.26 0.13 0.23 0.1 1 0.52 0.01 -0.07 0.03 -0.14
Mean SD 0.24 0.8 0.29 0.74 0.29 0.79 0.11 0.83 0.42 0.52 1 0.33 0.15 -0.09 0.3
S.factor.in.Norway 0.09 0.29 0.58 0.26 0.63 0.39 -0.45 0.16 0.03 0.01 0.33 1 0.67 -0.73 0.53
S.factor.in.Denmark -0.21 0.18 0.03 0.3 0.2 -0.05 -0.1 0.11 -0.04 -0.07 0.15 0.67 1 -0.7 0.19
IslamPewResearch2010 -0.02 -0.28 0.15 -0.2 -0.02 0.06 0.05 0.05 0.03 0.03 -0.09 -0.73 -0.7 1 -0.21
International.S.Factor 0.21 0.42 0.48 0.3 0.82 0.31 -0.44 0.18 0.06 -0.14 0.3 0.53 0.19 -0.21 1
R code (load in the megadataset as DF.mega3 first):
DF.interest = cbind(DF.mega3[2:12],
                    DF.mega3[14],
                    DF.mega3[40],
                    DF.mega3[42],
                    DF.mega3[64],
                    DF.mega3[76])
DF.interest.cor = rcorr(as.matrix(DF.interest))
round(DF.interest.cor$r,2)
write.csv(round(DF.interest.cor$r,2),file="OCEANCors.csv")

#remove IQ
DF.interest.cor.without.IQ = partial.r(DF.interest, c(1:15),16)
write.csv(round(DF.interest.cor.without.IQ,2), file="OCEANCors_no_g.csv")

DF.OCEAN.full = cbind(DF.mega3[2:12])
DF.OCEAN.full.omega = omega(DF.OCEAN.full)
DF.OCEAN.full.mr = fa(DF.OCEAN.full)

DF.OCEAN.mean = cbind(DF.mega3[c(2,4,6,8,10)])
DF.OCEAN.mean.omega = omega(DF.OCEAN.mean)
DF.OCEAN.mean.mr = fa(DF.OCEAN.mean)

DF.OCEAN.SD = cbind(DF.mega3[c(3,5,7,9,11)])
DF.OCEAN.SD.omega = omega(DF.OCEAN.SD)
DF.OCEAN.SD.mr = fa(DF.OCEAN.SD)

DF.OCEAN.general.scores = cbind(DF.OCEAN.mean.mr$scores,DF.OCEAN.SD.mr$scores,
                                DF.mega3[14],DF.mega3[40],DF.mega3[42],DF.mega3[64],DF.mega3[76])
colnames(DF.OCEAN.general.scores) = c("GFP.mean","GFP.SD","S.in.Norway","S.in.Denmark","Islam","S.Int","IQ")
round(cor(DF.OCEAN.general.scores,use="pairwise.complete.obs"),2)
DF.OCEAN.general.scores.no.IQ = partial.r(DF.OCEAN.general.scores,c(1:6),7)

Megadataset is in the OSF repository, version 1.6b.

New paper out: Crime, income, educational attainment and employment among immigrant groups in Norway and Finland

openpsych.net/ODP/2014/10/crime-income-educational-attainment-and-employment-among-immigrant-groups-in-norway-and-finland/

Abstract

I present new predictive analyses for crime, income, educational attainment and employment among immigrant groups in Norway and crime in Finland. Furthermore I show that the Norwegian data contains a strong general socioeconomic factor (S) which is highly predictable from country-level variables (National IQ .59, Islam prevalence -.71, international general socioeconomic factor .72, GDP .55), and correlates highly (.78) with the analogous factor among immigrant groups in Denmark. Analyses of the prediction vectors show very high correlations (generally ±.9) between predictors which means that the same variables are relatively well or weakly predicted no matter which predictor is used. Using the method of correlated vectors shows that it is the underlying S factor that drives the associations between predictors and socioeconomic traits, not the remaining variance (all correlations near unity).

All data and source files are at the OSF repository: osf.io/emfag/

Review: Dataclysm: Who We Are (When We Think No One’s Looking) (Christian Rudder)

www.goodreads.com/book/show/21480734-dataclysm

gen.lib.rus.ec/book/index.php?md5=9d2c0744b6bcce6ec9e67625125244a8

This good is based on the popular but discontinued OKTrends blog, but now apparently active again becus of the book release. There is some more info in the book than can be found on the blog, but overall there is much more on the blog. The book is short (300 pp) and written in non-academic style with no statistical jargon. Read it if u think big data about humans is interesting. The author is generally negative about it, so if u are skeptical about it, u may like this book.

New paper out: The international general socioeconomic factor: Factor analyzing international rankings

openpsych.net/ODP/2014/09/the-international-general-socioeconomic-factor-factor-analyzing-international-rankings/

Abstract
Many studies have examined the correlations between national IQs and various country-level indexes of well-being. The analyses have been unsystematic and not gathered in one single analysis or dataset. In this paper I gather a large sample of country-level indexes and show that there is a strong general socioeconomic factor (S factor) which is highly correlated (.86-.87) with national cognitive ability using either Lynn and Vanhanen’s dataset or Altinok’s. Furthermore, the method of correlated vectors shows that the correlations between variable loadings on the S factor and cognitive measurements are .99 in both datasets using both cognitive measurements, indicating that it is the S factor that drives the relationship with national cognitive measurements, not the remaining variance.

This one took a while to do. Had to learn a lot of programming (R), do lots of analyses, 50 days in peer review. Perhaps my most important paper so far.

 

Comment on CPGGrey’s new video on the future of automatization

Posted on reddit.

 

This is your best film yet, and that says something.

For automatization for clinical decisions, it has been known for decades that simple algorithms are better than humans. This has so far not been put to much practice, but it will eventually. See review article: Grove, W. M., Zald, D. H., Lebow, B. S., Snitz, B. E., & Nelson, C. (2000). Clinical versus mechanical prediction: a meta-analysis.[1] Psychological assessment, 12(1), 19.

There is only one temporary solution for this problem. It is to make humans smarter. I say temporary because these new smarter humans will quickly make robots even smarter and so they can replace even the new smarter humans.

How to make humans more intelligent? The only effective way to do that is to use applied human genetics aka. eugenics. This is because general intelligence (g-factor) is about 80% heritable in adults (and pretty much everything else is also moderately to highly heritable). There are two things we must do: 1) Find the genes for g. This effort is underway and we have found a few SNPs so far.[1-2] It is estimated that there are about 1k-10k genes for g. 2) Find out how to apply this genetic knowledge in practice to make both existing humans and the new ones smarter. The first effective technology for this is embryo selection[2] . Perhaps CRISPR[3] can work for existing humans.

  1. Rietveld, C.A., Medland, S.E., Derringer, J., Yang, K., Esko, T., et al. (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340: 1467-1471.
  2. Ward, M.E., McMahon, G., St Pourcain, B., Evans, D.M., Rietveld, C.A., et al. (2014) Genetic Variation Associated with Differential Educational Attainment in Adults Has Anticipated Associations with School Performance in Children. PLoS ONE 9(7): e100248. doi:10.1371/journal.pone.0100248