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Understanding the social and biological mechanisms that lead to
homogamy (similar individuals marrying one another) has been
a long-standing issue across many fields of scientific inquiry. Using
a nationally representative sample of non-Hispanic white US adults
from the Health and Retirement Study and information from 1.7
million single-nucleotide polymorphisms, we compare genetic sim-
ilarity among married couples to noncoupled pairs in the popula-
tion. We provide evidence for genetic assortative mating in this
population but the strength of this association is substantially
smaller than the strength of educational assortative mating in the
same sample. Furthermore, genetic similarity explains at most 10%
of the assortative mating by education levels. Results are replicated
using comparable data from the Framingham Heart Study.

homophily | random mating | genetic homogamy

Assortative mating occurs when individuals exhibit a prefer-
ence for those who are either similar, (homogamy) or dissimilar

(heterogamy) to themselves. Two expressions—“birds of a feather
flock together” and “opposites attract”—are used to explain friend-
ship and spousal pairings but denote opposite assumptions regarding
the direction of selection. Critically, no existing research has quan-
tified the degree to which individuals who select into a marriage are
genetically similar to one another across the entire genome.
Quantifying genome-wide genetic assortative mating (GAM)

in the population is important for methodological and substantive
reasons. First, statistical models in genetic epidemiology, such as
Hardy–Weinberg equilibrium, often assume random mating to
forecast population allele frequencies, homozygosity rates, and
other parameters of interest across generations (1) and behavior
genetics models assume random mating to calculate heritability
estimates (2). Second, social scientists have long studied the
causes and consequences of assortative mating on a number of
phenotypic measures such as height, education, religiosity, and
political partisanship (3–5). Although there is research with a fo-
cus on the implications of genetic homogamy for phenotypic
assortative mating (6), most studies of assortative mating have not
considered the possibility that GAM may underlie phenotypic
sorting. Social factors clearly limit opportunities to interact with
people of different backgrounds (7, 8) but there is no study that
simultaneously estimates educational assortative mating (EAM)
and GAM in the population. Although much is known about
changes in the nature of assortative mating over the past 50 y (5, 8,
9), little is known about the relationship between GAM and EAM.
We focus on EAM because it has received the largest amount

of attention in the assortative mating literature (4) and, equally
important, research has shown that educational attainment reflects
genetic influences (10, 11). No existing study has used genome-
wide data among spousal pairs to quantify GAM in the population.
This observation coupled with the potential bias caused by GAM
in traditional heritability estimates (12) makes this line of inquiry
both substantively and methodologically important to a large
group of biological and social scientists. In this paper we ask
three related questions. First, is there any evidence of GAM in
the population? Are genetically similar persons more likely to

marry than genetically dissimilar persons both inclusive of and
net of ethnic intramarriage? Or are spousal genotypes uncorrelated,
as is sometimes assumed? Second, how does the magnitude of
GAM compare with other phenotypically-based measures of
assortative mating in the population—such as education? Third,
to what extent is phenotypic assortative mating linked to GAM in
the population?

Results
Estimates of EAM and GAM. EAM and GAM estimates from the
Health and Retirement Study (HRS) (13) are shown graphically
in Fig. 1. Fig. 1, Upper addresses the first two research questions
in our study; Upper Left presents a graphical representation of
GAM. To illustrate the meaning of this curve, consider the point
where the two lines intersect. This point indicates that the me-
dian value of genetic similarity among spouses corresponds to
the 55th percentile (the horizontal line) in the general pop-
ulation of all possible pairs; spouses are more genetically similar
than randomly generated pairs in the population. To assess the
magnitude of the increased spousal genetic similarity, we focus
on the area of the shaded region above the 45° line. This pro-
duces an estimate of GAM of 0.045 [95% confidence interval
(CI): 0.026, 0.061]. This estimate of GAM includes GAM due to
intraethnic marriage among non-Hispanic whites, which we at-
tempt to remove in subsequent analyses.
To gauge the magnitude of this GAM coefficient, we per-

formed the same analysis using years of completed education
plus a small amount of noise (the rationale for the inclusion of
the noise is included in SI Text, section S1). This graph is shown
in Fig. 1, Upper Right. Our estimate of EAM is 0.127 (95% CI:
0.109, 0.144), an estimate that is 2.9 times as large as our estimate

Significance

It is well established that individuals are more similar to their
spouses than other individuals on important traits, such as
education level. The genetic similarity, or lack thereof, be-
tween spouses is less well understood. We estimate the ge-
nome-wide genetic similarity of spouses and compare the
magnitude of this value to a comparable measure of educa-
tional similarity. We find that spouses are more genetically
similar than two individuals chosen at random but this simi-
larity is at most one-third the magnitude of educational simi-
larity. Furthermore, social sorting processes in the marriage
market are largely independent of genetic dynamics of sexual
selection.
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of GAM. Together, these results answer our first two questions.
Namely, GAM exists in this sample but it is substantially smaller in
magnitude than EAM.
Next, we investigated whether GAM and EAM have a specific

common explanation through a small set of SNPs related to
educational attainment. We tested this hypothesis by examining
proxies for the SNPs that reached genome-wide significance in
a recent genome-wide association study (GWAS) on educational
attainment (11). In particular, we conducted a χ2 test using
the sum of the risk alleles for the target SNPs for husbands
and wives. The original SNPs were rs9320913, rs11584700, and
rs4851266. We identified proxies using SNP Annotation and
Proxy Search (14) that were correlated with the original SNP at
no less than 0.8. The P values for the three tests were all above
0.35. Hence, we found little evidence that there was assortative
mating based on these SNPs.
We conducted a replication analysis using data from the sec-

ond generation of the Framingham Heart Study (15). It is im-
portant to note that the participants of this study are a group of
predominantly white respondents from a geographically con-
strained area. In this secondary data set, we estimated GAM to
be 0.025 (95% CI: 0.005, 0.046) based on 685 spousal pairs.
Although we replicate the rejection of the null hypothesis of zero
GAM in a second sample, we also note the decline in the mag-
nitude of GAM compared with the estimate from HRS. Our
estimated EAM in the Framingham sample was similar to the
result from the HRS sample, 0.121 (95% CI: 0.102, 0.141).

Impact of Population Stratification on GAM. The existence of pop-
ulation stratification, small differences in allele frequencies that
may exist across socially defined racial and ethnic groups, complicates

many genetic analyses. In this section, we consider the extent to
which population stratification may be present in our sample and
how it may influence our measure of GAM. To characterize
genetic divisions among the sample of non-Hispanic whites, we
computed principal components (PCs) (SI Text, section S2) based
on the complete set of SNPs. These methods consider the cor-
relation between all of the SNPs within a population and identify
factors that account for the greatest amount of common genetic
variance. These factors align strongly with self-reported race and
ethnicity and provide continuous measures of ancestry that are
important controls for population stratification. There is sub-
stantial variability in the first PC only. Although we do not have
information on ethnicity aside from Hispanicity, the PCs are
largely unassociated with birth region (as a proxy for ethnic
mixture). Differences in PCs may be capturing the genetic sim-
ilarity (unrelated to population stratification) that we hope to
investigate in our GAM analysis. As it is unclear if these PCs are
confounding our estimate of GAM or are themselves an in-
teresting component of GAM, we do not focus on estimates that
control for these differences. We instead consider three alter-
native methods of adjusting for these differences in population
stratification (estimates based on direct controls for PCs are
shown in SI Text, section S2).
First, we use a subsample of our respondents with less vari-

ability in the first, and subsequent, PC(s) that presumably have
less ethnic variability than the full sample. This should in turn
reduce the impact that ethnic intramarriage among whites would
have on our estimates. We estimated GAM among only those
respondents with PC 1 > −0.003 to be 0.021 (95% CI: 0.002,
0.041). Note that this is very similar to the value obtained from
our estimate of GAM in the Framingham Heart Study (15),
a geographically homogenous sample.
A second approach for controlling the impact of population

stratification is to control for birth region in our estimate of
GAM because individuals from the same birth region are more
likely to come from the same ethnic group than two individuals
sampled from the entire nation (SI Text, section S3 and ref. 16).
In Fig. 1, Lower Left, we present an adjusted GAM estimate
produced by residualizing kinship using a linear model with
a dummy variable indicating whether a pair was born in the same
census division. Based on this approach, we estimated an ad-
justed GAM of 0.033 (95% CI: 0.013, 0.049). This change sug-
gests that some of our the initial GAM estimate is due to the fact
that people from the same geographic area are more likely to
marry one another than people from different areas (65% of the
spousal pairs are from the same birth region compared with just
13% of nonspousal pairs) and that these geographic areas may
capture subtle allele frequency differences across the population.
That said, there is evidence for residual GAM, even with geographic
controls. We note that this source of GAM is often not adjusted for
in many estimates of heritability or demographic models of spousal
assortative mating that use national (or international) samples, even
if the samples are of non-Hispanic whites.
Finally, we also attempted to adjust for the influence of pop-

ulation stratification via direct manipulation of the genetic data.
After computation of PCs, we identified SNPs that were most
associated with the first five PCs (and thus potential ethnic
markers) via GWAS. We then removed these SNPs from the
genetic data and recalculated kinship (additional details on this
process are in SI Text, section S4). Even after imposing extremely
conservative restrictions that removed 70% of the SNPs (remaining
SNPs were unrelated to any of the first five PCs), we estimated
a GAM of 0.026 (95% CI: 0.005, 0.045). We discuss the relation-
ship between the various estimates of GAM that control for pop-
ulation stratification in Discussion, but pause to note that several
different approaches have converged on an estimate of residual
GAM between 0.02 and 0.03.
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Fig. 1. Graphical representation of GAM and EAM. The y axis charts
quantiles of the distribution of kinship or squared educational differences
between all pairs. The x axis charts quantiles of the same distribution but
restricted to just cross-sex white spousal pairs. The shaded area in each gives
an estimate of assortative mating. The horizontal and vertical lines aid in
interpretation. In Upper Left, one can observe that the genetic relatedness
estimate at the 0.5 quantile of spousal pairs corresponds to the 0.55 quantile
of all pairs. Adjusted GAM (Lower Left) includes control for same birth re-
gion (census division). Adjusted EAM (Lower Right) includes a control for
kinship between the pairs.
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Relationship Between GAM and EAM. To answer the third research
question, we estimated EAM after first regressing out genetic
similarity (based on the kinship estimates). Fig. 1, Lower Right
describes the results of this analysis. As shown in this figure,
adjusting for GAM reduced EAM to 0.115 (95% CI: 0.102, 0.133).
Given that the kinship values used for this analysis may be affected
by population stratification, we view this as an upper bound.
Hence, at most 10% of the variance in EAM is due to GAM. We
also examine this relationship in reverse by computing a GAM
coefficient based on the residualized kinship coefficients (kinship
was regressed on the squared educational differences of a pair).
This coefficient declined from 0.045 to 0.026, a reduction of 42%.
We discuss our interpretation of this result in the following section.

Discussion
Spouses are more genetically similar than two individuals chosen
at random. As described in SI Text, section S5, our unadjusted
GAM result of 0.045 suggests that a 1-SD increase in genetic
similarity increases the probability of marriage by roughly 15%.
This association is confounded, in part, by intraethnic marriage
among whites but we continue to observe GAM even after a se-
ries of models designed to eliminate this source of assortative
mating. That is, after replication with an independent dataset
that is geographically homogeneous, restriction of our analyses
to a genetically homogeneous subsample of respondents, ad-
justment of kinships for common birth region, and elimination
from genetic data of SNPs that capture population structure, we
obtain estimates of GAM between 0.02 and 0.03. The lack of
additional ethnicity information in HRS makes it difficult to
understand the quantity of GAM that is due to ethnic homogamy
alone but the additional analyses suggest that preference for
intraethnic marriage accounts for roughly one-half of observed
GAM among non-Hispanic whites. It is worth noting that other
phenomena could be related to both marriage preference and
genetic architecture. Religion, for example, could be a source of
GAM in this respect. Future research could consider the pro-
portion of GAM that is due to such factors.
Although GAM exists, an important finding in our analyses is

that the magnitude of GAM is significantly smaller than the
magnitude of EAM. Furthermore, similar genotype explains only
a small fraction of EAM (less than 10%). Our attempt to un-
derstand the amount of EAM that could be explained by GAM is
based on the hypothesis that a fraction of phenotypic similarity
is due to genetic similarity. In short, that GAM causes EAM.
However, it is important for us to acknowledge that there are
alternative explanations. Education could structure GAM through
gene–environment correlations (17). For example, previous re-
search (18) suggests that genetic similarity among friends is
higher in schools with higher levels of economic inequality,
which emphasizes the need to consider structural differences in
educational institutions as a precursor to genetic selection into
friendships. Our results (in particular, the 42% decline in GAM
after controlling for EAM) indicate that social institutions may
segregate people on genotype (presumably unwittingly), which
could be behind some of the GAM that we observe. We do not
assess this hypothesis empirically but we encourage others to
consider this possibility in future research.
It is also important to note that both understandings (EAM

causes GAM or GAM causes EAM) do not consider that this
relationship is contingent upon the mean level of education
among the pairs. For example, Eckland (19) hypothesizes that
spousal correlations for intelligence are higher when the in-
telligence of either spouse is either exceptionally high or ex-
ceptionally low. This nonlinear relationship in conjunction with
the strong correlation between intelligence and years of com-
pleted education suggests that the direction and magnitude
of the GAM–EAM relationship may vary across the educa-
tional spectrum. Eckland (19) and others (20) have argued that

assortative mating and the genetic influences on status-related
outcomes may change over time. Higher levels of social inequality
reduce the likelihood that otherwise small genetic factors will
significantly shape an individual’s socioeconomic attainment but
historical changes in equality over time may provide or limit op-
portunities for these otherwise latent traits to manifest. Although it is
unclear if the cohort range in the HRS is large enough to evaluate
this hypothesis, we encourage future researchers to examine this
possibility as well as the interactive hypothesis described above.
Our findings have important implications for a range of dis-

ciplines. Social scientists might gain additional understanding of
assortative mating (or similar processes, such as friendship se-
lection) by considering the role of genes. This is particularly
important when one considers the significance of social factors
that limit or enable two individuals to select into a relationship
and how these factors differ across contexts and over time (18).
Although it is beyond the scope of this paper, it is also important
to consider the possibility that the intergenerational transmission
of education may depend on the relative influence of EAM and
GAM, which may change over time and context. That is, the
influence of EAM on the intergenerational transmission of ed-
ucation may depend on the extent to which EAM is due to
GAM. For example, if the proportion of EAM that is due to
GAM is increasing over time, then it has important implications
for our understanding of the intergenerational transmission of
education. This perspective is not possible when one only examines
EAM and offspring education.
Researchers presenting heritability estimates should consider

including estimates of general assortative mating or trait specific
genetic homogamy. Scientists have begun to interrogate the
underlying assumptions of kinship based models that attempt to
decompose the variation in a trait such as education into its
additive genetic, common environmental, and unique environ-
mental components. Recent work has used molecular approaches
to test one major assumption: the equal environments assump-
tion (21). The second key assumption, random mating with
respect to the genetic architecture of the trait among the parental
generation, has seen less investigation. Typically researchers use
parental correlations in the phenotype as a rough estimate of
nonrandom mating. However, of even greater value would be
understanding the quantity of nonrandom mating that there is
genetically with respect to the trait and how these associations have
changed over time.
The results presented here only represent a first step in

understanding the ways in which humans may assortatively mate
with respect to their genome. For instance, an extensive litera-
ture (22) has emerged suggesting that heterosexual individuals
find the odors of opposite sex persons more attractive if the test
odor comes from someone who is genetically discordant on
markers in the major histocompatiability complex area of chro-
mosome six, which is thought to be under pressures of bal-
ancing selection. Such a region-specific, negative-assortative-mating
dynamic may serve to depress overall (positive) GAM estimates.
Thus, it may behoove future researchers to break apart the ge-
nome into parts that are relevant to specific pathways or pro-
cesses that may be under different selective pressures to see if
genome-wide GAM estimates mask a mixture of strong positive
and negative dynamics with respect to different dimensions.
Our paper contributes to the literature on both GAM and

EAM but has several limitations that we encourage others to
consider. First, our results apply to opposite-sex non-Hispanic
white pairs within the United States. For nonwhite pairs within
the United States, different results might be obtained due to
limited genetic variance among non-Hispanic whites compared
with other groups (23) or because of different social contexts for
non-Hispanic whites compared with others (e.g., the racial
inequities that exist in the United States). That is, if individuals
are selecting into a relationship because of genetic similarity,
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then we might expect GAM to be higher among non-Hispanic
whites who are less likely than others to face limitations in terms
of residential, educational, or occupational choices. Second,
patterns of GAM and EAM might differ in same-sex couples.
Third, differences may be changing over time. For example, re-
cent research (24) suggests that there has been a rise in assor-
tative mating which has contributed to a rise in income inequality.
Fourth, we estimated genetic similarity using SNPs from across the
genome. Future research could focus on SNPs known to be im-
portant for education (11) or those identified in other GWAS to
examine homogamy at a finer level than our whole-genome ap-
proach. Given our results from the SNPs implicated in the edu-
cation GWAS, it might be that analyses at levels finer than the
entire genome but much larger than a single SNP, such as chro-
mosomes, would be appropriate.

Materials and Methods
Data. This paper uses data from the Health and Retirement Study (HRS) RAND
fat files (13). Access to the genome-wide data was approved by National
Center for Biotechnology Information Genotypes and Phenotypes Database
(access no. 19335-3). Of the 9,429 individual with genetic data (described
below), 4,584 were from the HRS cohort (five other cohorts are also included
in the full data). Of the 4,584, there were 3,504 non-Hispanic whites. Of
these, 1,763 individuals were in 862 spousal pairs (some individuals had more
than one spouse). We focus on only those individuals (with complete data) in
spousal pairs, 1,716 individuals in 825 spousal pairs, as there are differences
between individuals in spousal pairs and those not in spousal pairs (e.g.,
spouses have roughly a quarter year of education more on average). These
individuals were born during a large span of time (between 1920 and 1970)
but the majority (59%) were born in the 1930s. To assess EAM, we used total
years of education. In our sample, 14% had less than a high school educa-
tion, 38% had a high school education, and the remainder had more than
a high school education. We also used information on the respondent’s
birthplace (coded as one of nine census divisions plus two categories for US
birth with no additional information and foreign birth, 0.1% and 5.1% of
the sample, respectively).

Genetic data for the HRS is based on DNA samples collected in two phases.
The first phasewas collectedvia buccal swabs in 2006 using theQiagenAutopure
method. The second phase used saliva samples collected in 2008 and extracted
with Oragene. Genotype calls were then made based on a clustering of both
data sets using the Illumina HumanOmni2.5-4v1 array (details on the quality
control process can be found via ref. 25). After standard quality control proce-
dures (e.g., removing SNPs that were missing in more than 5% of samples; minor
allele frequencies below 1%; failure to meet Hardy–Weinberg equilibrium,
violations of which suggest errors in the genotyping process), we retained
1,707,214 SNPs. We also performed replication analysis on data from the
Framingham Heart Study (15) (a description of these data can be found in
SI Text, section S6).

Measuring Genetic Similarity. Quantifying GAM in the population relies on
a valid and reliable measure of genetic relatedness between all individuals in
the study. Genetic relatedness is a basic biological concept that undergirds
quantitative genetic analyses (1). The bulk of this research relied on un-
measured genetic similarity among different types of relatives (e.g., siblings,
twins, cousins, etc.) and recently this same conceptual approach used ge-
nome-wide data from related (26) and unrelated (27) individuals. These
methods are similar in that they take advantage of naturally occurring
variability in the degree to which two individuals’ genomes are more or less
similar compared with others in the population. It is precisely this variability
between unrelated individuals that we use here. There are a number of
methods for estimating genetic similarity based on measured genotype but
the properties of these various estimates differ. We experimented with
a measure that is based on the assumption of a common allele frequency
across a sample (28) but this measure was found to be highly sensitive to
population stratification (details are shown in SI Text, section S7). Therefore,
we use a measure of kinship that has been shown to be more robust to
population stratification than previous estimates of genetic similarity across
the genome (29). This procedure produces a matrix that describes the ge-
netic similarity for all pairs of individuals in our sample.

Measuring GAM. The traditional approach to measuring EAM is to analyze the
correlation of spousal educational attainment. It is important to note that this
approach is possible because each spouse has a level of education. In contrast,

measures of genetic relatedness exist at the pair level because relatedness
measures a quantity with respect to a specific alter, rather than an absolute
level (e.g., years of completed schooling). Hence, a spousal pair would have
only a single measure of genetic relatedness versus two measures of edu-
cation, one for each spouse. The correlation approach is thus not a viable
option for measuring GAM. We have instead chosen to concentrate on
differences in the distributions of genetic relatedness between married and
unmarried pairs of respondents. Although this approach is unique, we
studied its behavior via a simulation study (SI Text, section S5), which dem-
onstrated that the method is able to distinguish assortative mating from
random mating in samples of this size.

Characterizing the presence and magnitude of genetic homogamy via
a comparison of distributions is challenging because it requires a relevant
comparison group. One approach would be to consider, for a focal individual,
only those individuals with whom the individual is likely to marry given
certain characteristics (e.g., age). Results based on such an approach would
perhaps be unpersuasive given their potential sensitivity to the formation of
the group of potential spouses for a person. To avoid this dilemma, we test
GAM against the null hypothesis of random mating. As such, we make only
minimal assumptions about the possible range of mates by restricting our
comparisons of interest only to cross-sex, same-race individuals. We impose
these sex and race restrictions due to limitations in existing data andmethods.
With respect to sex, we do not have data on same-sex couples. The restriction
to same-race couples is done because the relatedness measures can be
sensitive to population stratification that may exist across racial groups
(additionally, there are relatively few cross-race couples in the data: only 6%
of the spousal pairs from the 1,093 spousal pairs in the HRS cohort data
discussed in SI Text, section S7).

For both EAMandGAM, ourmotivating counterfactual is thatmates select
at random into unions. As such, the distribution of educational or genetic
differences among spousal pairs would be the same for all possible cross-sex
and same-race pairs in the population. To test this assumption, we compute
quantiles (0.001–0.999 in increments of 0.001) for the distribution of the
differences among the spousal pairs. We then map these values among
spousal pairs to the corresponding quantiles among nonspousal pairs
(all cross-sex, same-race pairs). When such results are depicted graphically
(Fig. 1), the 45° line indicates the null hypothesis that the similarity among
spouses matches the similarity among nonspouses. If the similarity among
spouses differs from the similarity of nonspouses, then this is captured by
departure from the 45° line. EAM and GAM are estimated as the area be-
tween this curve and the 45° line. For key estimates, 95% CIs for the esti-
mates were then created via 1,000 bootstrap replications.

Whenmeasuring EAM,we first standardize educationwithin each sex. Our
motivation for standardizing educationwith respect to sex is thatmore highly
educated females will tend to marry more highly educated males. Because of
the demographic composition of this cohort, “more education” might mean
different things for males and females (e.g., “some college” for females
versus a college degree for males). Without standardization, a monotonic
relationship between the probability of marriage and educational differ-
ences cannot be assumed because there would be ambiguity about the re-
gion between 0 and the mean educational difference. That is, if the average
difference in completed schooling between males and females is 2 y,
a couple with the same level of schooling are not at the same point of their
sex specific distribution of years of schooling, and are thus “different.” For
education, our results are comparable with and without standardization
because the distributions across the genders are similar (SI Text, section S1).
However, standardization is a potentially important component of the
methodology and would be an important consideration if analyzing phe-
notypes, such as height, whose distributions vary more across sex. We also
multiply all educational differences by −1 so that, as with kinships, larger
numbers mean more similar respondents.

Population Stratification. Because racial/ethnic homogamy is already well
known in the literature (30), we focus on residual GAM—GAM that remains
within genetically stratified samples that may challenge the assumptions of
random mating and intergenerational models in the social sciences. Thus,
we only use a sample of non-Hispanic whites in the HRS. Intraethnic assor-
tative mating among Americans of European descent is well documented (3)
and small differences in allele frequencies across European ethnic groups are
easily identified with genome-wide data (31). As such, the identification of
GAM may simply show that Europeans with a similar ethnic background are
more likely to marry one another than individuals from different ethnic
backgrounds. For example, using data from the Framingham Heart Study,
researchers decomposed total genetic variation into PCs that characterize
these otherwise small genetic differences across European subpopulations and
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they calculate a spousal correlation of 0.58 for the first PC in this sample (32).
Using similar methods, we estimated a comparable value (r = 0.54) for the first
PC among non-Hispanic and white spouses in the HRS. To identify residual
GAM, we describe the results from a series of analyses that introduce restric-
tions in an attempt to understand the extent to which GAM may simply arise
from ethnic homogamy within non-Hispanic white couples. These models in-
clude the following adjustments: (i) restriction of the sample based on the first
PC, (ii) including statistical controls for census division of birth as a proxy for
ethnic background, and (iii) estimating GAM with a reduced set of SNPs that
do not show any evidence of stratification in our sample.
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S1. Sensitivity of Educational Assortative Mating Estimate
Weaddress two issues in the computation of educational assortative
mating (EAM): the addition of small quantities of noise and the
within-sex standardization of educational attainment.Working with
the raw squared educational differences leads to inaccurate results
for EAM. The reason for this is subtle. The left-hand side of the
distribution of educational differences is a long string of 0s (those
pairs with the same education). Any quantile, no matter how small,
computed relative to this empirical cumulative distribution function
is going to be the percentage of pairs with the same education.
Because this is a rather sizeable percentage of the overall distri-
bution when there is no measurement error, the area between the
curves is distorted. For this reason, we instead worked with edu-
cation that was slightly perturbed at the individual level by adding
a very small amount of noise. To demonstrate the robustness of
our finding to this addition of noise, we conducted a sensitivity
analysis in which the SD of the noise varied. Results are shown in
Fig. S1. When the distribution of noise is quite large (SD = 1), the
signed area starts at around 0.11. As the SD decreases to very near
0, the signed area settles around the estimate from Fig. 1. The far
right-hand dot in Fig. S1 represents the signed area when no error
is used. We also considered an estimate of EAM in which edu-
cation was not standardized. The resulting EAM estimate, 0.131,
was quite similar to the estimate 0.127 presented in Results, Esti-
mates of EAM and GAM. This lack of a change is due in part to the
fact that the educational differences between males and females in
our sample were fairly small (a median of 12 y for both genders
and only a difference of 0.2 y in the means). These results provide
confidence that our approach for EAM measurement is not a
remnant of modeling decisions.

S2. Principal Components
Fig. S2 shows the first four principal components (PCs) for the
sample of spouses. These PCs were computed within the non-
Hispanic white sample of respondents that are analyzed in Fig. 1.
There is substantially more variation on the first PC than on any
of the others. There is no information on ethnicity aside from
Hispanicity in the Health and Retirement Study (HRS) (1), so we
used the region of birth as one way of characterizing the PCs.
Fig. S3 shows the mean by census division for PCs 1 and 2. The
scale of this figure is based on the range of the individual values
of the PCs (and the vertical line represents a cutoff to be dis-
cussed shortly). In brief, the PCs did not sharply distinguish
between regions although one can see that the Atlantic seaboard
(regions 1 and 2) tended to have slightly lower values on PC 1
than the other regions.
Analyses in which the kinships were adjusted for pairwise

difference in either the squared or absolute value of the PCs are
described in Table S1. After adjusting for just PC 1, the genetic
assortative mating (GAM) estimates declined substantially.
Adjusting for additional PCs moved the estimates to nearly 0. For
example, adjusting for the first PC reduces GAM to 0.011 [95%
confidence interval: −0.006, 0.029]. As described in Impact of
Population Stratification on GAM, we believe that this approach is
potentially flawed because it is unclear what differences between
individuals (geographic differences? differences in countries of
origin?) are being captured by the PCs. Turning back to Fig. S2,
the red dots were chosen as a subset of the spousal sample
(PC 1 > −0.003) that was relatively comparable on these PCs. We
estimated a GAM value of 0.021 among this sample. This estimate

is comparable to the value found among the ethnically homogenous
Framingham sample described in Description of Framingham Data.

S3. Geography as a Proxy for Ethnicity
In this section, we present evidence that controls for the census
division capture regional variability in ethnicity. The census
divisions partition the states in the following way:

1) New England division: Connecticut, Maine, Massachusetts,
New Hampshire, Rhode Island, and Vermont

2) Middle Atlantic division: New Jersey, New York, and Penn-
sylvania

3) East North Central division: Illinois, Indiana, Michigan,
Ohio, and Wisconsin

4) West North Central division: Iowa, Kansas, Minnesota, Missouri,
Nebraska, North Dakota, and South Dakota

5) South Atlantic division: Delaware, District of Columbia, Florida,
Georgia, Maryland, North Carolina, South Carolina, Virginia,
and West Virginia

6) East South Central division: Alabama, Kentucky, Mississippi,
and Tennessee

7) West South Central division: Arkansas, Louisiana, Oklahoma,
and Texas

8) Mountain division: Arizona, Colorado, Idaho, Montana, Nevada,
New Mexico, Utah, and Wyoming

9) Pacific division: Alaska, California, Hawaii, Oregon, and
Washington

HRS contains data on the census division at birth for each re-
spondent (unspecified US births and foreign births are coded as 10
and 11, respectively; see Fig. S3). We used data from the 1980 US
census (2) to compare ancestry within and across census divisions.
We focused on spouses living in the same households, with valid
ancestry records, and born between 1930 and 1940 (to make the
respondents comparable to the sample of HRS respondents used
here). After imposing these filters, we had 650,724 individuals of
European ancestry and 165,552 individuals of non-European an-
cestry. We define European ancestry based on the ANCESTR1
variable, specifically codes 1–195. These codes correspond to nu-
merous countries or regions across Western and Eastern Europe.
However, we have excluded those of European Hispanic origin to
be consistent with the exclusion of Hispanics from the HRS dataset.
To determine ethnic concentration within census divisions, we

computed the mean percentage of individuals identifying as
a particular ancestry within a census division. A lower value
indicates a more diverse set of ancestries within a region. Suppose
one state was evenly split between white, black, and Hispanic
individuals. A second state was evenly split between white and
Asian individuals. The index for the first state would be one-third
whereas the index for the second state would be one-half. The first
state, with the lower value, has the more diverse population. We
then divided this index by the mean across the entire nation. We
define this as the ethnic concentration within a region. Within
a census division, the average concentration of Europeans
European was 1.6. Within states, the average concentration was
2.9. Clearly there is more ethnic concentration within states, but
census divisions explain a proportion of this. It is interesting to
note that there is much greater concentration of ethnicities within
both census divisions (2.5) and states (6.5) when non-European
ethnicities are considered.
We can also use this data to understand the tendency toward

intraethnic marriages and the relationship between intraethnic
marriages and place of birth. Among 195,355 spousal pairs (where
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each spouse is of European ancestry), 41% of the pairs were of the
same ancestry. To interpret this number, the fact that the ancestry
indicator is relatively fine-grained (over 100 different ancestry
designations) must be remembered. We also considered the
following hierarchical regression model:

logit
�
Pr
�
Same_Ancestryijk = 1

��
= α+ β ·

�
Same_Divisionijk

�

+ μj + γk

for pair i in census division j and state k. Being born in the same
census division increases the odds of a marriage between indi-
viduals of the same ancestry by 70%. The variance components
associated with μj and γk were 0.11 and 0.06, respectively. Based
on this evidence, we argue that there is clearly ethnic concentra-
tion among individuals of European ancestry in the United
States that is captured by geography. Furthermore, we argue that
being born in the same census division explains some of the
preference for intraethnic marriages in the United States.

S4. Removal of SNPs Associated with PCs
We identified SNPs associated with population stratification by
performing a genome-wide association for each of the first five
PCs (controlling for sex and birth year). We then systematically
removed those SNPs from our genetic data which had a P value in
one of the five regressions that was below a given threshold (this
varied from 5e-8 to 5e-2). With these different sets of SNPs, we
then recomputed kinship values based on the remaining SNPs
and reestimated GAM and adjusted GAM (based on controlling
for census division of birth). The results of this exercise are
presented in Table S2. Note that we lose over 70% of the SNPs
going from the full genetic sample to only those SNPs with
P values from all five regressions greater than 0.05. These re-
maining 457,201 SNPs are those that show very little evidence of
population stratification in our sample. The most important
observation is that our estimated GAM is relatively insensitive to
the removal of SNPs until we get to the 5e-3 threshold, where
nearly half of the SNPs have been removed. However, even after
the removal of the majority of the SNPs, there is still evidence
for GAM. Furthermore, the reduction due to the adjustment
(based on same census division at birth) is much less for these
estimates based on kinship computed using only SNPs un-
associated with the first five PCs.

S5. Simulation Study
The proposed methodology is, to our knowledge, unique in the
study of homogamy. Hence, it is important to determine that it is
a viable approach for detecting homogamy in our sample. This
simulation study demonstrates two crucial facts. First, the meth-
odology can distinguish assortative mating from random mating.
Second, the results produced by the methodology vary as expected
as a function of the strength of assortative mating. The simulation
study presented here is based on systematically controlling the
strength of homogamy in a simulated sample and then calculating
the area (as described in Materials and Methods), which acts as
a measure of assortative mating.
The simulation involves three key steps. In the below de-

scription of the simulation, it is important to remember that there
are in fact two simulation studies (one for kinship, one for ed-
ucational differences) that share a common structure. For fixed
values of the sample size (N), homogamy strength (indexed by A,
described below), and SD of kinship values (σ2), consider the
following:

i) For each pair of individuals, a quantity is randomly gener-
ated that represents either genetic relatedness or the squared
difference in years of education. Consider first relatedness.
We simulate relatedness values by sampling ðN2 −NÞ=2 (this

is the number of lower-triangular entries in an N ×N matrix)
values from Normal[0, σ2]. We use the observed SD for
kinships in our sample as the value of σ2. For education,
we first generate individual-level educations using the ob-
served distribution of educations in our sample and then
generate all possible squared pairwise differences.

ii) We now let individuals select into unions. Individuals select
into pairs based on a multinomial distribution. The proce-
dure differs for education and kinship. Consider the set of
relatedness estimates for all individuals with individual i. If
individuals k and i have relatedness Rik, then a weight (pro-
portion to the probability of individual k marrying individual
i) is assigned to individual k:

wk =
expðARikÞ

1+ expðARikÞ:

The degree of homogamy in the simulation is manipulated
through A. When A = 0, there is no homogamy (mating is ran-
dom with respect to relatedness) and this is reflected by all
pairings getting equal weights. The weights are then standardized
to sum to unity and are the probabilities for the multinomial
distribution. A draw from multinomial distribution (with only
a single trial) is used to generate a mate for individual i. Mates
are generated for all individuals in this manner with the additional
restriction that only a single mate is assigned to each person.
To understand the computation of the weights for education, it

is important to be aware of a key distinction between kinship and
education. With kinship, we have more and less related indi-
viduals and there should be amonotonically increasing relationship
between relatedness and the probability of getting married. This is
the motivation behind the choice of the logistic transformation
above. With squared education differences, not only is the distri-
bution bounded below by 0, but the relationship should also be
monotonically decreasing (increasing differences in education
should lead to decreasing probabilities of getting married). This
requires a different transformation and we use

wk =
1

1+ADik
;

where Dik is the squared education difference between two in-
dividuals. Again, A is used to control the strength of homogamy
in the simulation. Once weights are computed, the same pro-
cedure is used to generate matched pairs.

iii) The signed area metric is then computed based on the dis-
tribution of spousal differences to differences between all
pairs. Unlike in the main text, we do not multiply edu-
cational differences by −1. This is done to emphasize the
difference between educational differences and genetic
relatedness values in the simulation.

The simulation performs those steps for a fixed value of N
(chosen to replicate the number of spousal pairs, n = 825, in our
sample) and different values of A.
Key results for the simulation study are shown in Fig. S4. The y

axis in this figure is the signed area as described in Materials and
Methods. The x axis measures changes in A that are being ma-
nipulated in the simulation. This quantity controls the proba-
bility weight of two individuals marrying. The scale factor is
based on computations involving the distribution of either pair
relatedness or educational differences. In particular, it is the
value of the ratio of the probability weight at one SD above the
mean of this distribution to the value at the mean. When this
value is unity, there is no assortative mating (e.g., the random
mating hypothesis is true). Note that in both the kinship and
education versions of the simulation (gray and black) a value of
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unity corresponds to essentially no area between the assortative
mating curve and the 45° line. This indicates that the method-
ology can identify situations in which mating is random. Fur-
thermore, as the scale factor deviates from unity we are able to
detect increasing GAM and EAM (signed areas deviate from 0).
The estimated EAM coefficient from Fig. S4 (dashed black

line) is consistent with a scale factor of roughly 0.5. This in-
dicates that, according to the assumptions in our calculation, a 1-
SD increase (from the mean) in squared educational differences
corresponds to a probability weight that is 50% as large as the
one used at the mean squared education difference. The result for
GAM (dashed gray line) is weaker. A 1-SD increase from the
mean relatedness corresponds, under the assumptions of our
simulation, to a 15% increase in the probability weight of two
individuals marrying. These results provide intuition regarding
the probability of marriage that is consistent with the homophily
observed via the signed areas. However, they must be in-
terpreted with care because they are dependent on the as-
sumptions used in this simulation.

S6. Description of Framingham Data
The study sample for this project was derived from the Framingham
SNP Health Association Resource (SHARe, Version 6) as avail-
able through the National Center for Biotechnology Information
Database of Phenotypes and Genotypes dbGaP (3). The original
cohort of the study was first assessed in 1948; nearly 25 y later, the
respondents’ children (the G2 sample, n = 3,548) and many of
their spouses participated in this study of the offspring cohort.
Then, in 2002, roughly 4,000 adults who had at least one parent in
the offspring cohort took part in the third generation (G3) cohort
study. The analysis for our research focused on 1,624 individuals
from the G2 sample of the Framingham Heart Study. We use

genetic data for 260,402 SNPs, details on the quality control
process used to select these SNPs can be found elsewhere (4).
Using 685 spousal pairs drawn from the sample of 1,624 in-
dividuals, we calculated a GAM value of 0.025 (0.005, 0.046).

S7. Sensitivity of Genome-Wide Complex Trait Analysis
Estimates to Population Stratification
We considered two measures of genetic relatedness. The first (5)
assumes a common allele frequency. These estimates, which we
refer to as “GCTA” (genome-wide complex trait analysis) esti-
mates based on the software used to generate them, are likely to
be biased in the presence of population stratification. To dem-
onstrate this, we computed GCTA estimates as well as kinship
estimates (6) for all spouses in the HRS cohort (2,163 individuals
in 1,093 spousal pairs). Of the individuals in this sample, 8%
identified as black/African-American and 3% identified as other.
Fig. S5 compares GCTA and kinship estimates for the two in-
dividuals. Note the large estimates for couples that consist of two
black individuals (represented as “5” in the figure). In contrast,
pairs that consist of white couples have reasonable GCTA esti-
mates; the interquartile range was between 0.01 and 0.015. Be-
cause the GCTA estimates were based on a primarily white
sample, we inaccurately conclude that two nonwhite individuals
are genetically quite similar. The median black spousal pair has
a GCTA estimate approach of 0.39. This approaches the esti-
mated genetic relatedness of full siblings from other studies
(especially figure 1 of ref. 7). This is clearly a problem. In con-
trast, the kinship estimates never exceed 0.05, which is to be
expected given that these are unrelated people. Some pairs have
large negative values, but these are typically between couples
with different racial backgrounds and would thus be excluded
from our analyses.
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Fig. S1. EAM estimate as a function of the SD of the added noise.
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Fig. S2. Matrix scatterplot of the first four genome-wide PC values. All data comes from the HRS (n = 1,716) (1). Red dots identify respondents with PC 1 >
−0.003. This is a more genetically homogeneous subgroup that is the focus of additional analyses.
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Fig. S5. Comparison of GCTA and kinship estimates of genetic similarity in the HRS (1).

Table S1. GAM estimates after controlling for PCs, both squared
differences and absolute values

Controls Squared differences Absolute values

PC 1 0.011 0.008
PCs 1–2 0.012 0.008
PCs 1–3 0.013 0.005
PCs 1–4 0.009 0.006
PCs 1–5 0.009 0.006

Table S2. Results obtained after removal of SNPs associated
with population stratification

Threshold No. of SNPs GAM Adjusted GAM

None 1,707,214 0.045 0.033
5E-08 1,516,889 0.043 0.030
5E-06 1,431,983 0.043 0.029
5E-04 1,201,518 0.040 0.030
5E-03 934,430 0.036 0.026
5E-02 457,201 0.026 0.020
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