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Preface

To the Student

The most important thing for you to know about this book is that it is
designed to be used with a teacher. You should not expect to learn
logic from this book alone (although it will be possible if you have had
experience with formal systems or can make use of the website at
http://mitpress.mit.edu/LogicPrimer/). We have deliberately reduced to
a minimum the amount of explanatory material, relying upon your
instructor to expand on the ideas. Our goal has been to produce a text
in which all of the material is important, thus saving you the expense
of a yellow marker pen. Consequently, you should never turn a page of
this book until you understand it thoroughly.

The text consists of Definitions, Examples, Comments, and Exercises.
(Exercises marked with asterisks are answered at the back of the
book.) The comments are of two sorts. Those set in full-size type
contain material we deem essential to the text. Those set in smaller
type are relatively incidental—the ideas they contain are not essential
to the flow of the book, but they provide perspective on the two logical
systems you will learn.

In this age of large classes and diminished personal contact between
students and their teachers, we hope this book promotes a rewarding
learning experience.

To the Teacher

We wrote this book because we were dissatisfied with the logic texts
now available. The authors of those texts talk too much. Students
neither need nor want page after page of explanation that require them
to turn back and forth among statements of rules, examples, and
discussion. They prefer having their teachers explain things to
them—after all, students take notes. Consequently, one of our goals
has been to produce a text of minimal chattiness, leaving to the
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instructor the task of providing explanations. Only an instructor in a
given classroom can be expected to know how best to explain the
material to the students in that class, and we choose not to force upon
the instructor any particular mode of explanation.

Another reason our for dissatisfaction was that most texts contain
material that we are not interested in teaching in an introductory logic
class. Some logic texts, and indeed some very popular ones, contain
chapters on informal fallacies, theories of definition, or inductive logic,
and some contain more than one deductive apparatus. Consequently,
we found ourselves ordering texts for a single-semester course and
covering no more than half of the material in them. This book is
intended for a one-semester course in which propositional logic and
predicate logic are introduced, but no metatheory. (Any student who
has mastered the material in this book will be well prepared to take a
second course on metatheory, using Lemmon’s classic, Beginning
Logic, or even Tennant’s Natural Logic.)

We prefer systems of natural deduction to other ways of representing
arguments, and we have adopted Lemmon’s technique of explicitly
tracking assumptions on each line of a proof. We find that this
technique illuminates the relation between conclusions and premises
better than other devices for managing assumptions. Besides that, it
allows for shorter, more elegant proofs. A given assumption can be
discharged more than once, so that it need not be assumed again in
order to be discharged again. Thus, the following is possible, and there
is no need to assume P twice:

1 () P->(Q&R) assume
2 2 P assume
1,2 (3) Q&R from 1,2
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1,2 @ Q from 3

1,2 (5 R from 3

1 6y P->Q from 4, discharge 2
1 (7 P—>R from 35, discharge 2
1 B P—->Q&P—->R) from 6,7

Clearly, the notion of subderivation has no application in such a
system. The alternative approach involving subderivations allows a
given assumption to be discharged only once, so the following is
needed:

() P->(Q&R) assume

2y P assume

3 Q&R from 1,2

4 Q from 3

G P->Q from 4, discharge 2
6) P assume

(7 Q&R from 1,6

(same inference as at 3!)

8) R from 7

9 P->R from 8, discharge 6
(1) P—>Q &P —>R) from 5,9

The redundancy of this proof is obvious. Nonetheless, an instructor
who prefers subderivation-style proofs can use our system by changing
the rules concerning assumption sets as follows: (i) Every line has the
assumption set of the immediately preceding line, except when an
assumption is discharged. (ii)) The only assumption available for
discharge at a given line is the highest-numbered assumption in the
assumption set. (iii) After an assumption has been discharged, that line
number can never again appear in a later assumption set. (In other
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words, the assumption-set device becomes a stack or a first-in-last-out
memory device.)

There are a number of other differences between our system and
Lemmon’s, including a different set of primitive rules of proof. What
follows is a listing of the more significant differences between our
system and Lemmon’s, together with reasons we prefer our system.

. Lemmon disallows vacuous discharge of assumptions. We allow
it. Thus it is correct in our system to discharge an assumption by
reductio ad absurdum when the contradiction does not depend on
that assumption. Whenever vacuous discharge occurs, one can
obtain a Lemmon-acceptable deduction by means of trivial
additions to the proof. We prefer to avoid these additions. (Note
that Lemmon’s preclusion of vacuous discharge means that
accomplishing the same effect requires redundant steps of &-
introduction and &-elimination. For instance, Lemmon requires
(a) to prove P - Q — P, while we allow (b).

(a)

| (1 P assume

2 2) Q assume

12 3 Q&P from 1,2

1,2 @4 P from 3

1 5 Q-—P from 4, discharge 2
(b)

1 () P assume

2 2 Q assume

1 3 Q-—P from 1, discharge 2
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. Lemmon’s characterization of proof entails that an argument has
been established as valid only when a proof has been given in
which the conclusion depends on all of the argument’s premises.
This is needlessly restrictive, since in some valid arguments the
conclusion is in fact provable from a proper subset of the
premises. We remove this restriction, allowing a proof for a
given argument to rest its conclusion on some but not all of the
argument’s premises.

. We have replaced Lemmon’s primitive v-Elimination rule by
what is normally known as Disjunctive Syllogism (DS). We
realize that Lemmon’s rule is philosophically preferable, as it is
a pure rule; however, DS is so much easier to learn that
pedagogical considerations outweigh philosophical ones in this
case.

. Despite the preceding point, we have kept the d-elimination rule
used by Lemmon. Although slightly more complicated than the
more common rule of 3-Instantiation, this rule frees the student
from having to remember to instantiate existential quanti-
fications before instantiating universal quantifications. It also
frees the student from having to examine the not-yet-reached
conclusion of the argument, to determine which instantial names
are unavailable for a given application of I-Instantiation.
Furthermore, at any point in a proof using 3-elimination, some
argument has been proven. If the proof has reached a line of the
form

m,...,n k) z

then the sentence z has been established as provable from the
premise set {m,...,n}. (Here the right-hand ellipsis indicates



Xiv

Preface

which rule was applied to yield z, and which earlier sentences it
was applied to.) This is quite useful in helping the student

understand what is going on in a proof. In a system using 3-
instantiation, however, this feature is absent: there are correct
proofs some of whose lines do not follow from previous lines,
since the rule of J-instantiation is not a valid rule. For instance,
the following is the beginning of a proof using 3-instantiation.

1 () JxFx assumption
1 (2 Fa 1 J-instantiation

Line 2 does not follow from line 1. This difference between 3-

elimination and 3J-instantiation can be put as follows: in an 3-
elimination proof, you can stop at any time and still have a

correct proof of some argument or other, but in an 3-instantiation
proof, you cannot stop whenever you like. It seems to us that

these implications of F-instantiation’s invalidity outweigh the

additional complexity of F-elimination. In an J-elimination
system, not only is the system sound as a whole, but every rule is

individually valid; this is not true for an 3-instantiation system.

Whereas Lemmon requires that existentialization (existential
generalization) replace all tokens of the generalized name by
tokens of the bound variable, we allow existentialization to pick
up only some of the tokens of the generalized name.

We have abandoned Lemmon’s distinction between proper
names and arbitrary names, which is not essential in a natural
deduction system. The conditions on quantifier rules ensure that
the instantial name is arbitrary in the appropriate sense. (We
comment on this motivation for the conditions in the text.)
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In many cases, we have deliberately not used quotation marks to
indicate that an expression of the formal language is being mentioned.
In general, we use single quotes to indicate mention only when
confusion might result. (We hope no one is antagonized by this
flaunting of convention. Trained philosophers may at first find the
absence of quotes disconcerting, but we believe that we are making
things easier without leading the student astray significantly.)

We have tried to present the material in a way that reveals clearly the
systematic organization of the text. This manner of presentation makes
it especially easy for students to review the material when studying,
and to look up particular points when the need arises. Consequently,
there is little discursive prose in the text, and what seemed unavoidable
has been relegated to the Comments. We hope to have produced a
small text that is truly student-oriented but that still allows the
instructor a maximum of flexibility in presenting the material.

The Second Edition

With one exception, the changes to the second edition have been
minimal. We have added a treatment of identity to chapters 3 and 4. In
chapter 3 this required merely a slight modification to the definition of
wif, some comments on translation, and the inclusion of introduction
and elimination rules for identity. The changes made to chapter 4 are
more extensive. In the first edition we avoided overt reference to the
object language/metalanguage distinction and had no need to introduce
into the specification of interpretations the extensions (denotations,
referents) of names, but the inclusion of identity in the language
necessitates them. To keep matters simple, when giving interpretations
for sentences that involve identity we use italicized names in the
metalanguage, and we recommend that no member of the universe of
an interpretation be given more than one metalinguistic name. This
makes it easy to specify whether or not two names of the object
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language have the same extension in an interpretation, for the same
metalinguistic name will be used for names denoting the same object.
Expansions now involve the use of italicized names, so that strictly
speaking they are not wffs of the object language. This does not affect
their use in determining truth values of quantified wffs in an
interpretation, and facilitates their use in determining truth values of
wifs involving identity. (We realize that italicization is not available
for hand-written exercises, so we recommend that instructors adopt a
convention such as underlining for blackboard presentations.) The
addition of the material on identity is supplemented with new exercises
in chapters 3 and 4. We have tried to organize the new material in such
a way that an instructor who wishes to omit it can do so easily.

In chapter 1, a set of exercises has been inserted whose proofs do not

require —1 and RAA. That is, these proofs do not involve the
discharge of assumptions. These exercises are intended to allow
students to become comfortable with the remaining rules of proof

before they are forced to learn the more complicated mechanics of —I
and RAA.

In chapter 3 we have waited until after the section on translations to
introduce the notions of a wif’s universalization, existentialization, and
instance. This change reduces the chance of the student’s confusing the
rules for constructing universally quantified wffs, where at least one
occurrence of a name must be replaced by a variable, and univers-
alization, where all occurrences of the name must be replaced.
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Web Support

A variety of interactive exercises and an automated proof checker for
the proof systems introduced in this book can be accessed at
http://mitpress.mit.edu/LogicPrimer/. Use of the software requires
nothing more than a basic web browser running on any kind of
computer.
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Chapter 1

Sentential Logic

1.1
argument,

premises,
conclusion

validity

Basic logical notions

Definition. An ARGUMENT is a pair of things:
¢ a set of sentences, the PREMISES
¢ a sentence, the CONCLUSION.

Comment. All arguments have conclusions, but not all
arguments have premises: the set of premises can be
the empty set! Later we shall examine this idea in
some detail.

Comment. If the sentences involved belong to English (or any other
natural language), we need to specify that the premises and the
conclusion are sentences that can be true or false. That is, the
premises and the conclusion must all be declarative (or indicative)
sentences such as “The cat is on the mat’ or ‘I am here’, and not
sentences such as ‘Is the cat on the mat?’ (interrogative) or ‘Come
here!” (imperative). We are going to construct some formal
languages in which every sentence is either true or false. Thus this

qualification is not present in the definition above.

Definition. An argument is VALID if and only if it is
necessary that if all its premises are true, its conclusion
is true.

Comment. The intuitive idea captured by this defi-
nition is this: If it is possible for the conclusion of an
argument to be false when its premises are all true,
then the argument is not reliable (that is, it is invalid).
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soundness
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Chapter 1

If true premises guarantee a true conclusion then the
argument is valid.

Alternate formulation of the definition. An argument is
VALID if and only if it is impossible for all the
premises to be true while the conclusion is false.

Definition. When an argument is valid we say that its
premises ENTAIL its conclusion.

Definition. An argument is SOUND if and only if it is
valid and all its premises are true.

Comment. It follows that all sound arguments have
true conclusions.

Comment. An argument may be unsound in either of
two ways: it is invalid, or it has one or more false
premises.

Comment. The rest of this book is concerned with validity rather

than soundness.

Indicate whether each of the following sentences is
True or False.

Every premise of a valid argument is true.

Every invalid argument has a false conclusion.

Every valid argument has exactly two premises.

Some valid arguments have false conclusions.

Some valid arguments have a false conclusion despite
having premises that are all true.
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vi* A sound argument cannot have a false conclusion.
vii* Some sound arguments are invalid.
viii* Some unsound arguments have true premises.
ix* Premises of sound arguments entail their conclusions.
x* If an argument has true premises and a true conclusion
then it is sound.
1.2 A Formal Language for Sentential Logic
formal Comment. To represent similarities among arguments
language of a natural language, logicians introduce formal
languages. The first formal language we will introduce
is the language of sentential logic (also known as
propositional logic). In chapter 3 we introduce a more
sophisticated language: that of predicate logic.
vocabulary Definition. The VOCABULARY OF SENTENTIAL
LOGIC consists of
¢ SENTENCE LETTERS,
* CONNECTIVES, and
* PARENTHESES.
sentence Definition. A SENTENCE LETTER is any symbol
letter from the following list:
A LAy L AL
sentence Comment. By the use of subscripts we make available
variable an infinite number of sentence letters. These sentence

letters are also sometimes called SENTENCE VARI-
ABLES, because we use them to stand for sentences
of natural languages.
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connectives  Definition. The SENTENTIAL CONNECTIVES
(often just called CONNECTIVES) are the members
of the following list: ~, &, v, —, <.

Comment. The sentential connectives correspond to
various words in natural languages that serve to
connect declarative sentences.

tilde ~ The TILDE corresponds to the English ‘It is not the
case that’. (In this case the use of the term ‘connective’
is odd, since only one declarative sentence is negated
at a time.)

ampersand & The AMPERSAND corresponds to the English ‘Both
...and ...’.

wedge v The WEDGE corresponds to the English ‘Either ... or
...”in its inclusive sense.

arrow — The ARROW corresponds to the English ‘If ... then

’

double- < The DOUBLE-ARROW corresponds to the English
arrow ‘if and only if”.
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)and (

expression

metavariable

Comment. Natural languages typically provide more than one way
to express a given connection between sentences. For instance, the
sentence ‘John is dancing but Mary is sitting down’ expresses the
same logical relationship as ‘John is dancing and Mary is sitting
down’. The issue of translation from English to the formal

language is taken up in section 1.3.

The right and left parentheses are used as punctuation
marks for the language.

Definition. An EXPRESSION of sentential logic is
any sequence of sentence letters, sentential connec-
tives, or left and right parentheses.

Examples.

(P — Q) is an expression of sentential logic.
YPQ—~ is also an expression of sentential logic.
(3 — 4) is not an expression of sentential logic.

Definition. Greek letters such as ¢ and y are used as
METAVARIABLES. They are not themselves parts of
the language of sentential logic, but they stand for
expressions of the language.

Comment. (§ — ) is not an expression of sentential
logic, but it may be used to represent an expression of
sentential logic.
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well-formed  Definition. A WELL-FORMED FORMULA (WFF)

formula

atomic
sentence

negation

of sentential logic is any expression that accords with
the following seven rules:

(1) A sentence letter standing alone is a wif,

[Definition. The sentence letters are the ATOMIC
SENTENCES of the language of sentential logic.]

(2) If ¢ is a wff, then the expression denoted by ~0 is
also a wif.

[Definition. A wit of this form is known as a NEGA -
TION, and ~¢ is known as the NEGATION OF ¢.]

(3) If ¢ and y are both wffs, then the expression
denoted by (¢ & ) is a wif.

conjunction  [Definition. A wif of this form is known as a CON-

disjunction

JUNCTION. ¢ and vy are known as the left and right
CONJUNCTS, respectively.]

(4) If ¢ and y are both wffs, then the expression
denoted by (¢ v ) is a wit.

[Definition. A wif of this form is known as a DIS-
JUNCTION. ¢ and vy are the left and right
DISJUNCTS, respectively.]

(5) If ¢ and y are both wiffs, then the expression
denoted by (¢ — ) is a wif.
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conditional, [Definition. A wif of this form is known as a CONDI-

antecedent, = TIONAL. The wff ¢ is known as the ANTECEDENT

consequent of the conditional. The wff y is known as the
CONSEQUENT of the conditional.]

(6) If ¢ and y are both wffs, then the expression
denoted by (¢ <> ) is a wif.

biconditional [Definition. A wff of this form is known as a
BICONDITIONAL. It is also sometimes known as an
EQUIVALENCE ]

(7) Nothing else is a wff.

binary Definition. &, v, —, and < are BINARY CONNEC-

and unary TIVES, since they connect two wifs together. ~isa

connectives  UNARY CONNECTIVE, since it attaches to a single
wif.

sentence Definition. A SENTENCE of the formal language is a

wif that is not part of a larger wif.

denial Definition. The DENIAL of a wff ¢ that is not a
negation is ~0. A negation, ~¢, has two DENIALS: ¢
and ~~0.

Example.

~(P — Q) has one negation: ~~(P — Q)
It has two denials: (P — Q) and ~~(P — Q).

(P — Q) has just one denial: its negation, ~(P — Q).
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Comment. The reason for introducing the ideas of a sentence and a
denial will be apparent when the rules of proof are introduced in

section 1.4,

Which of the following expressions are wffs? If an
expression is a wff, say whether it is an atomic
sentence, a conditional, a conjunction, a disjunction, a
negation, or a biconditional. For the binary connec-
tives, identify the component wffs (antecedent, con-
sequent, conjuncts, disjuncts, etc.).

A

(A

(A)

(A —>B)

(A —(

(A—> B —>0)

(P& Q) —R)

(A &B) Vv (C = (D & Q)
~(A — B)

~P->Q v~Q&R)

~(A)

(~A) > B

(~P&P)& (P < (QvVv~Q)
(~(BvP)&C)< (Dv~G)—> H))
(~Qv~B)) vV(E - DvIX))
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parenthesis-
dropping
conventions

Comment. For ease of reading, it is often convenient to
drop parentheses from wifs, so long as no ambiguity
results. If a sentence is surrounded by parentheses then
these may be dropped.

Example.
P — Q will be read as shorthand for (P — Q).

Comment. Where parentheses are embedded within
sentences we must be careful if we are to omit any
parentheses. For example, the expression P & Q — R
is potentially ambiguous between (P & Q) — R) and
(P & (Q — R)). To resolve such ambiguities, we adopt
the following convention: ~ binds more strongly than
all the other connectives; & and v bind component
expressions more strongly than —, which in turn binds
its components more strongly than <.

Examples.

~P & Q—> Risread as (-P & Q) - R).

P—> Qe Risread as (P — Q) « R).

P v Q & R is not allowed, as it is ambiguous between
(Pv(Q&R))and (P v Q) &R).

P — Q — Ris not allowed, as it is ambiguous between
(P—(Q —>R))and (P —> Q) —» R).

Comment. The expressions admitted by these paren-
thesis-dropping conventions are not themselves well-
formed formulas of sentential logic.
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Exercise 1.2.2 Rewrite all the sentences in exercise 1.2.1 above, using

Exercise 1.2.3

the parenthesis-dropping conventions. Omit any paren-
theses you can without introducing ambiguity.

State whether each of the following is ambiguous or
unambiguous, given the parenthesis-dropping conven-
tions. In the unambiguous cases, write out the sen-
tences and reinstate all omitted parentheses.

i* P&~QvR

ii* PvQ—->R&S

iii* PvQ—-oReS

iv¥ PvQ&R —>-~S

v¥ P>R&S—>T

vi* P->Q—->R-—>S

vii* P&Q& ~RvS

viii* ~P&QVR->S&T

ix* P>Q&~-R&-~SvT—>U

x* P>Q&~-R—>~SvTo U

1.3 Translation of English to Sentential Wffs
translation Definition. A TRANSLATION SCHEME for the lan-
scheme guage of sentential logic is a pairing of sentence letters

with sentences of a natural language. The sentences in
a translation scheme should be logically simple. That
is, they should not contain any of the words
corresponding to the sentential connectives.
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logical form

stylistic
variants

11

Definition. The LOGICAL FORM of a sentence of a
natural language relative to a translation scheme is
given by its translation into a wff of sentential logic
according to that translation scheme.

Example.
Under the translation scheme
P: John does well at logic
Q: Bill is happy
The sentence
If John does well at logic, then Bill is happy
has the logical form (P — Q).

Comment. English provides many different ways of
stating negations, conditionals, conjunctions, dis-
junctions, and biconditionals. Thus, many different sen-
tences of English may have the same logical form.

Definition. If two sentences of a natural language have
the same logical form relative to a single translation
scheme, they are said to be STYLISTIC VARIANTS
of each other.

Comment. There are far too many stylistic variants of
negations, conjunctions, disjunctions, conjunctions,
and biconditionals to list here. The follow is a partial
list of stylistic variants in each category.



12

negations

conditionals
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Let P translate the sentence ‘John is conscious.” Here

are a few of the ways of expressing ~P:
John is not conscious.
John is unconscious.
Tt is not the case that John is conscious.
It is false that John is conscious.

Stylistic variants whose logical form is (¢ — W),
where ¢ is the antecedent and Wy is the consequent
include the following:

If ¢, v.

¢ only if w.

¢ is a sufficient condition for .

¢ is sufficient for .

Provided that ¢, y.

y provided that ¢.

y on the condition that ¢.

s is a necessary condition for ¢.

s is necessary for ¢.

Whenever ¢, .

yif .

Given that 0, .

In case ¢, y.

¢ only on the condition that .
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conjunctions

disjunctions

biconditionals

neither...
nor ...

13

Variants with logical form (¢ & W) include the
following:

¢ and .

Both ¢ and .

¢, but .

¢, although .

¢ as well as .

Though ¢, .

¢, also y.

Variants with logical form (¢ v ) include these:
0 or .
Either ¢ or .
¢ unless .

Comment. ‘0 unless Y’ is also commonly translated as
(~y = ¢). The proof techniques introduced in section
1.4 can be used to show that this is equivalent to

OV ).

Variants having the logical form (¢ <> ) include the
following:

¢ if and only if .

¢ is equivalent to y.

¢ is necessary and sufficient for .

¢ just in case .

English sentences of the form ‘Neither ¢ nor 3y’ have
the logical form ~(0 v ), or, equivalently, (~¢ & ~y/).
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Comment. In English, the sentences ‘Mary is dancing’
and ‘Mary will dance’ have different meanings because
of the tenses of their respective verbs. In some cases,
when one is analyzing arguments it is important to
preserve the distinction between tenses. In other cases,
the distinction can be ignored. In general, a judgment
call is required to decide whether or not tense can be
safely ignored.

Example.
Consider the following two arguments:

A If Mary is dancing, John will dance.
Mary is dancing.
Therefore, John is dancing.

B If Mary dances, John will dance.
If John dances, Bill will dance.
Therefore, if Mary dances, Bill will dance.

In A, if the difference between ‘John will dance” and
‘John is dancing’ is ignored, then the argument will
look wvalid in translation. But this seems unreasonable
on inspection of the English.

In B, ignoring the difference between ‘John will dance’
and ‘John dances’ also makes the argument valid in
translation. In this case, however, this seems reason-
able.
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Exercise 1.3

1%
2%
3%
4%
g%
6%

7

8*
9*

10%*
11%*

12%
13*

15

In the translation exercises that follow, assume that
tense distinctions may be ignored.

Translate the following sentences into the language of
sentential logic.

Translation scheme for 1-20
John dances.

Mary dances.

Bill dances.

John is happy.

Mary is happy.

Bill is happy.

CHLPAQOT

John is dancing but Mary is not dancing.

If John does not dance, then Mary will not be happy.
John’s dancing is sufficient to make Mary happy.
John’s dancing is necessary to make Mary happy.

John will not dance unless Mary is happy.

If John’s dancing is necessary for Mary to be happy,
Bill will be unhappy.

If Mary dances although John is not happy, Bill will
dance.

If neither John nor Bill is dancing, Mary is not happy.
Mary is not happy unless either John or Bill is
dancing.

Mary will be happy if both John and Bill dance.
Although neither John nor Bill is dancing, Mary is
happy.

If Bill dances, then if Mary dances John will too.

Mary will be happy only if Bill is happy.
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Neither John nor Bill will dance if Mary is not happy.
If Mary dances only if Bill dances and John dances
only if Mary dances, then John dances only if Bill
dances.

Mary will dance if John or Bill but not both dance.

If John dances and so does Mary, but Bill does not,
then Mary will not be happy but John and Bill will.
Mary will be happy if and only if John is happy.
Provided that Bill is unhappy, John will not dance
unless Mary is dancing.

If John dances on the condition that if he dances Mary
dances, then he dances.

Translation scheme for 21-25

A purpose of punishment is deterrence.

Capital punishment is an effective deterrent.
Capital punishment should be continued.
Capital punishment is used in the United States.

L ROV

A purpose of punishment is retribution.

If a purpose of punishment is deterrence and capital
punishment is an effective deterrent, then capital pun-
ishment should be continued.

Capital punishment is not an effective deterrent al-
though it is used in the United States.

Capital punishment should not be continued if it is not
an effective deterrent, unless deterrence is not a pur-
pose of punishment.

If retribution is a purpose of punishment but deterrence
is not, then capital punishment should not be con-
tinued.
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Capital punishment should be continued even though
capital punishment is not an effective deterrent pro-
vided that a purpose of punishment is retribution in
addition to deterrence.

1.4

turnstile

sequent

proof

Primitive Rules of Proof

Definition. The TURNSTILE is the symbol |-.

Definition. A SEQUENT consists of a number of
sentences separated by commas (corresponding to the
premises of an argument), followed by a turnstile,
followed by another sentence (corresponding to the

conclusion of the argument).
Example. (P& Q) > R, ~R &P+ ~Q

Comment. Sequents are nothing more than a
convenient way of displaying arguments in the formal
notation. The turnstile symbol may be read as
‘therefore’.

Definition. APROOF is asequence of lines contain-
ing sentences. Each sentence is either an assumption or
the result of applying a rule of proof to earlier
sentences in the sequence. The primitive rules of proof
are stated below.
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Comment. The purpose of presenting proofs is to de-
monstrate unequivocally that a given set of premises
entails a particular conclusion. Thus, when presenting
a proof we associate three things with each sentence in
the proof sequence:

On the right of the sentence we provide an ANNO-
TATION specifying which rule of proof was applied
to which earlier sentences to yield the given sentence.

assumption set On the far left we associate with each sentence an

line number

line of proof

proof for
a given
argument

ASSUMPTION SET containing the assumptions on
which the given sentence depends.

Also on the left, we write the current LINE NUM-
BER of the proof.

Definition. A sentence of a proof, together with its
annotation, its assumption set and the line number, is
called a LINE OF THE PROOF.

Example.
1,2 (7 P->Q&R 6 —-I1(3)
T Line number T Annotation

Assumption set Sentence

Definition. A PROOF FOR A GIVEN ARGUMENT
is a proof whose last sentence is the argument’s
conclusion depending on nothing other than the
argument’s premises.
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Definition. The ten PRIMITIVE RULES OF
PROOF are the rules assumption, ampersand-intro-
duction, ampersand-elimination, wedge-introduction,
wedge-elimination, arrow-introduction, arrow-elimina-
tion, reductio ad absurdum, double-arrow-introduction,
and double-arrow-elimination, as described below.

Assume any sentence.

Annotation: A
Assumption set:  The current line number.
Comment: Anything may be assumed at any

time. However, some assumptions
are useful and some are not!

Example.
1 1 PvQ A

Given two sentences (at lines m and n), conclude a
conjunction of them.

Annotation: m, n &I

Assumption set:  'The union of the assumption sets at
lines m and n.

Comment: The order of lines m and n in the
proof is irrelevant. The lines re-
ferred to by m and n may also be the
same.

Also known as:  Conjunction (CONJ).
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Examples.

1 (1) P A

2 2 Q A

1,2 3 P&Q 1,2 &I
1,2 4 Q&P 1,2 &I
1 5 P&P 1,1 &I

Given a sentence that is a conjunction (at line m), con-
clude either conjunct.

Annotation: m &E
Assumption set: The same as at line m.
Also known as:  Simplification (S).

Examples.

()

1 (1) P&Q A

1 2 Q 1 &E
1 3 P 1 &E
(b)

1 1) P&(Q—->R) A

1 (2) Q—-R 1 &E

Given a sentence (at line m), conclude any disjunction
having it as a disjunct.

Annotation: m VI
Assumption set: 'The same as at line m.
Also known as:  Addition (ADD).
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wedge-elim

Examples.
(@)

1 (1)
1 (2)
1 3)
(b)

1 (M
1 (2)

21

P A
PvQ 1vI
Re-~T)VvP 1vI
Q—R A

Q—>R)v P &-~S) 1vI

Given a sentence (at line m) that is a disjunction and
another sentence (at line ») that is a denial of one of its
disjuncts conclude the other disjunct.

Annotation:

m, n vE

Assumption set: The union of the assumption sets at

Comment:

lines m and n.
The order of m and n in the proof is
irrelevant.

Also known as:  Modus Tollendo Ponens (MTP),

Examples.
(a)

1 (1)
2 ()
1,2 3)
(b)

1 (1)
2 2)

1,2 3)

Disjunctive Syllogism (DS).

PvQ A
~P A
Q 1,2 vE
Pv(Q—=R) A
~(Q—>R) A
P 1,2 vE
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()
1 (1) Pv-~R A
2 2) R A
12 (3 P 1,2 VE

Given a sentence (at line n), conclude a conditional

having it as the consequent and whose antecedent

appears in the proof as an assumption (at line m).

Annotation:
Assumption set:

Comment:

n —I (m)

Everything in the assumption set at
line n excepting m, the line number
where the antecedent was assumed.
The antecedent must be present in
the proof as an assumption. We
speak of DISCHARGING this as-
sumption when applying this rule.
Placing the number m in parentheses
indicates it is the discharged assump-
tion. The lines m and n may be the
same.

Also known as:  Conditional Proof (CP).
Examples.

()

1 (H ~PvQ A

2 2 P A

1,2 3) Q 1,2vE

1 4 P->Q 3-12)
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(b)

1 () R A

2 2 P A

2 (3) P-R 1-1(2)
(©

1 (H P A

2) PP 1-I(D)

Given a conditional sentence (at line m) and another
sentence that is its antecedent (at line n), conclude the
consequent of the conditional.

Annotation: m, n >E

Assumption set:  The union of the assumption sets at
lines m and n.

Comment: The order of m and #n in the proof is
irrelevant.

Also known as:  Modus Ponendo Ponens (MPP),
Modus Ponens (MP), Detachment,
Affirming the Antecedent.

Example.
1 (1) P->Q A
2 2 P A

123 Q 1,2 >E
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Given both a sentence and its denial (at lines m and n),

conclude the denial of any assumption appearing in the
proof (at line k).

Annotation:

m, n RAA (k)

Assumption set: 'The union of the assumption sets at

Comment:

m and n, excluding k (the denied
assumption).

The sentence at line & is the assump-
tion discharged (a.k.a. the REDUC-
TIO ASSUMPTION) and the con-
clusion must be a denial of the dis-
charged assumption. The sentences
at lines m and »n must be denials of
each other.

Also known as:  Indirect Proof (IP), ~Intro/ ~Elim.

Examples.
(a)

1 (1
2 (2)
3 3)
1,3 4)
1,2 (5)
(b)

1 (1)
2 (2)
3 3)
2,3 4)
123 (5)
1,3 (6)

P—->Q A

~Q A

P A

Q 1,3 >E

~P 24 RAA (3)
PvQ A

~P A

~P— ~Q A

~Q 23 >E

P 1.4 vE

P 2,5RAA (2)
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double-arrow-
intro

double-arrow-
elim

()

1 (1)
2 )
3 3)
2,3 (4)

25
P A
Q A
..Q A
~P 2,3RAA (1)

Given two conditional sentences having the forms
¢ — vy and Yy — ¢ (at lines m and n), conclude a
biconditional with ¢ on one side and \ on the other.

Annotation:

my,n <l

Assumption set: The union of the assumption sets at

Comment:
Examples.
1 (1)
2 (2)
1,2 3)
1,2 4)

lines m and n.
The order of m and n in the proof is

irrelevant.
P—Q A
Q—>P A
P Q 1,21
QoP 1,2 <l

Given a biconditional sentence ¢ <>  (at line m), con-
clude either ¢ — Wy or y — ¢.

Annotation:

m <E

Assumption set: the same as at m.

Also known as:  Sometimes the rules <1 and <E

are subsumed as Definition of Bicon-
ditional (df.<>).
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Examples.

1 (1) P&Q A

1 2 P->Q 1 <E
1 3 Q-—-P 1 <E

Comment. These ten rules of proof are truth-
preserving. Given true premises, they will always
yield true conclusions. This entails that if a proof can
be constructed for a given argument, then the argument
is valid.

Comment. A number of strategies aid in the discovery of proofs,
but there is no substitute for practice. We do not provide any proof-
discovery strategies in this book—that is the instructor’s job. We
do provide plenty of exercises, so there should be no lack of

opportunity to practice.

Exercise 1.4.1 Fill in the blanks in the following proofs.

i P~QFP&-~Q
1 (Hh P —
2 ~Q A
3) P&-Q
ii* PvQ,~QVvR, H
(1) PvQ A
2 2) ~QvR —
N € ) .
@ Q 1,3 VE

5) 24
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iii* P>QPvQFQ

iv*

(1)
)
3)
4
)
(6)

P—->Q
PvQ
~Q

P

Q

(D
)
3)
“4)
)
(6)
(7

~P<Q

~P
~QvVvR
~P—-Q

R
~P—R

\% P>QF((RvV~Q) —> (P —>R)

1
2
3

—_

(1)
2
3)
4
)
(6)
(7

P—->Q
P
R

Rv~Q)—P—>R)

27

2,4

1,3 >E
24VE
551(3)
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Exercise 1.4.2 Give proofs for the following sequents. All of these

proofs may be completed without using the rules —I
or RAA.

S1* Pv~R,~R—>S,~PFS

S2 Pv-~R,~R—>S~PFS&-~R

S3* P>-~Q,~-QvR—>~S,P&THF~S

S4* P&SQ&R),P&R—>~S,SVvTHFT

S5 P->Q,P>R,PFQ&R

S6 PQVvR,~RvS,~QFP&S

S7* ~PbRv~P&PVvQEQ

S8 PQ)»RP—-QQ—-PFR

S9* ~P>Q&R,~PVvVS—>~T,U&~PF(U&R) & ~T
S10 QvR&~-S>T,Q&U,~-Sv~UFT&U

1.5 Sequents and Derived Rules

double Comment. If a sequent has just one sentence on each
turnstile side of a turnstile, a reversed turnstile may be inserted

() to represent the argument from the sentence on the
right to the sentence on the left.

Example. P =P v P

Comment. This example corresponds to two sequents:
PFPvPandP v P P. You may read the example
as saying ‘P therefore P or P, and P or P therefore P’.
When proving ¢ -+ y, one must give two proofs: one
for ¢ - y and one for y - ¢.
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Exercise 1.5.1

S1i*
S12*
S13
S14%
S15
S16*
S17*
S18*
S19
520
S21*
S22
523
524
S25

Example.
Prove PPV P.

(a) Prove PP v P.
1 (H P
1 2) PvP

(b) Prove Pv PP

1 () PvP
2 (2) ~P
12 (3) P

1 4) P

29

1vI

A

A

1,2 vE

2,3 RAA (2)

Give proofs for the following sequents, using the

primitive rules of proof.

P4 ~~P
P—Q,~-QF~P
P—->-~Q QF~P
~P—>Q,~QFP
~P—-~Q,QFP
P->Q,Q—-oRFP—>R
PFQ—>P
~PFP—>Q
PH~P—>Q
P->QP->~QF~P
~PvQ-HEP—>Q
PvQ-d-~P—->Q
PvQ4-~Q—>P
Pv~Qd-Q—>P
PvQ,P>R Q—>RFR

Double Negation
Modus Tollendo Tollens
MTT

MTT

MTT

Hypothetical Syllogism
True Consequent

False Antecedent

FA

Impossible Antecedent
Wedge-Arrow (v—)
v—

v—

v—

Simple Dilemma
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S26*
S27
S28%*
S29
S30
S31
S32%
S33
S34
S35
S36
S37%*
S38*
S39
S40
S41%*
S427%
543
S44
S45
S46
S47
S48
S49
S50
S51
S52

PVQ,P>R,Q—SFRVS

P->Q~-P>QFHQ
~PvQ)d-~P & ~Q
~P&Q)1+~Pv -~Q
P& Q- ~(~P v ~Q)
PvQ-d-~-~P&~Q)
~P—->Q) 4P & ~Q
~P—->~Q) P& Q
P—> Q-+ ~P & ~Q)
P>~Q-dF~P & Q)
P&Q-4-Q&P
PvQdFQvP
PQH-FQe P
P—->Q-d~Q—>~P

P&£(Q&R)AIF(P&Q)&R
PviQvR)dAFPvQ)VvR

Chapter 1

Complex Dilemma
Special Dilemma
DeMorgan’s Law

DM

DM

DM

Negated Arrow (Neg—)
Neg—

Neg—

Neg—

& Commutativity
v Commutativity
< Commutativity
Transposition

& Associativity

v Associativity

P& (QvVvR)dA- (P& Q)v (P&R) &/v Distribution
PviQ&R)dAF (P v Q)& (Pv R) v/& Distribution

P> Q>R 4FP&Q >R

P& Q,PHQ
P~Q,QFP

P& Q,~PH-~Q

P& Q,~QF-~P

P Q-d-~Q« ~P
P& ~Q-d-~P & Q
~P- Q) 4P ~Q
~P Q) 1A ~P < Q

Imp/Exportation
Biconditional Ponens
BP

Biconditional Tollens
BT

BiTransposition
BiTrans

Negated <

Nege—



Chapter 1

31

Exercise 1.5.2 Give proofs for the following sequents using the

S53*
S54
S55%
S56*
S57
S58
S59
S60
S61

S62
S63

substitution
instance

primitive rules of proof.

P Q- (P& Q) v (~P & ~Q)
P>Q&R,Rv~Q—>S&T, T URFP—>U
(~PVvQ)&R,Q—>SFP(R—>S)
Q&R,Q—>PVS,~S&R)FP
Po>R&Q,S—>~Rv~QFS&P—>T
R&PR—->SVvQ),~(Q&P)FS
P&XQR&~S,Q—->P->T), T>oR=>SYWFW
R>~PQ,Q—->Pv-~S)FS—>~R
P>Q,PoRP-5ST— U (~V—-8)),

QoT,R>W->U,V—>~WWF-~P
P& ~Q&S,P&EGT—=~SF~Q&T
PvQoP&QFPQ

Definition. ASUBSTITUTION INSTANCE of a
sequent is the result of uniformly replacing its
sentence letters with wifs.

Comment. This definition states that each occurrence
of a given sentence letter must be replaced with the
same wff throughout the sequent.

Example.

The sequent
PvQF~P—>Q

has as a substitution instance the sequent
R&S)VQF~R&S)—>Q

according to the substitution pattern
P/(R & S); Q/Q.
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Comment. The given substitution pattern shows that
the sentence letter P was replaced throughout the
original sequent by the wff (R & S), and the sentence
letter Q was replaced throughout by itself.

Identify each of the following with a sequent in
exercise 1.5.1 and identify the substitution pattern.

R—>S-H~S—>~R
~P>QvR,QvR—->S+H~P—>S

P&Q VRAIFRvV P &Q)

PvQ) & (~Rv~S)TH({(PvQ) & ~R) v (PVQ) &~S)
RvS -+ ~~RvYS)

PvR)&S I ~P VvR —~5)
PviQvR)4~P—>QVvR
~P&QFR—->~P&Q)

~((P&QVR&S) IF~P&Q)&~R &S)
PVRvS),P>Q&R,RVvS—>Q&RFQ&R

Comment. Any sequent that one has proved using only

the primitive rules may subsequently be used as a

DERIVED RULE of proof if

(i) some sentences appearing in the proof are the
premises of the sequent, or

(ii) some sentences appearing in the proof are the
premises of a substitution instance of the sequent.

In case (i) the conclusion of the sequent may be
asserted on the current line; in case (ii) the conclusion
of the substitution instance may be asserted.
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Annotation: The line numbers of the premises fol-
lowed by S#, where S# is the num-
ber from the book, or the name of
the sequent (see comment below).

Assumption set:  The union of the assumption sets of
the premises.

Comment. All of the sequents in exercise 1.5.1 (S11-
S52) are used so frequently as rules of proof that they
have the names we have indicated. (Indeed, in some
systems of logic some of our derived rules are given as
primitive rules.)

Examples.

(a) ProveRvS > T, ~T F ~R.

1 (1) RvS—>T A

2 2 -~T A

1,2 3) ~RvYS) 1,2 MTT
1,2 4 ~R&-~S 3 DM
1,2 5) -~R 4 &E

(b) ProvePVR >SS, T—>~SFT - ~PVvR).

1 (1) PVR—S A
2 (2) T—-~S A
1 (3) ~S—~PVR) 1 Trans

1,2 4 T—-~PVvR) 2,3 HS
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Exercise 1.5.4

S64
S65
S66*
S67*
S68
S69
S70
S71
S72

S73*
S74
S75
S76*
S77
S78*
S79*
S80*
S81*

Chapter 1

Comment. Requiring that the sequent to be used as a derived rule
has been proved using only primitive rules is unnecessarily restric-
tive. If the sequents are proved in a strict order and no later sequent
in the series is used in the proof of an earlier sequent, then no
logical errors can result. We suggest the stronger restriction only
because it is good practice to construct proofs using only the

primitive rules.

Prove the following using either primitive or derived
rules from the previous exercises. If you like a
challenge, prove them again using primitive rules only.

~P—>P-H-P

PQ-HAR~(P— Q) —> ~(Q—P))

PoQHFPVQ P &Q

PQ-AR~Pv Q) v ~(~Pv-~Q)

PoQAF~P& Q) —»~PvQ)

P& Q- ~(~(P & Q) & ~(~P & ~Q))

PvQ—-R&~P,QVvR,~RFC

~PQ,P>R,~-RF~Q<R

~(Po~Q e R),S—>P&Q&T),
RvP&S)FS&K—->R&Q

PEQVRVSOHF(P&Q VR)VS

P& (Q&~R),P>(~-S—>T),~-S—>(T<RVQFES

P&~Q—->~-R(~S—>~-P)~-RFR Q&P &~S)

PvQ Q>R & (-PVvS), Q&R —->TFTvVS

P— QVR, (~Q&S)v(T—~P), ~(~R - ~P) - ~T & Q

PvQP>R—>~S),(~-RT)>~PHFS&T—>Q

P~Q) — ~R, (-P&S) v (Q&T),SVT-RFQ —>P

~SviS&R),(S—>R)—>PFP

PV(RvQ), R—>S) & (Q—TD,SvT>PVvQ,~P+Q



Chapter 1

S82%*
S83%*
S84
S85%

S86
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P—>Q) —R S—>(-~Q—=>T)FRv~T—(S—R)

P&Q—>RVvSH®—oR)V(Q—S)

(P—Q) & (R = P), (PVR) & ~(Q&R) - (P&Q) & ~R

P&Q—>RVS) &~R&S),R&Q — S,
S>(R&Q)V(~R&~Q))v~PFP— ~Q

~(P&~Q)V~(~-R&~S), ~S&~Q, T—>(~S—> ~R&P) - ~T

1.6

theorem

Theorems

Definition. A THEOREM is a sentence that can be
proved from the empty set of premises.

Comment. We can assert that a given sentence is a
theorem by presenting it as the conclusion of a sequent
with nothing to the left of the turnstile.

Example.

Prove FP& Q> Q&P

1 (H P&Q A

1 2 Q 1 &E

1 3 P 1 &E

1 4 Q&P 2,3 &I
3 P&Q->Q&P 4 I (1)

Comment. Note that in step 5 we discharge as-
sumption 1. Hence, the final conclusion rests on no
assumptions.
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Exercise 1.6.1 Prove the following theorems, (i) using primitive rules

T1*
T2%*
T3
T4*
T5%*
T6
T7
T8*
TO*
T10*
T11*
T12*
T13*
T14*
T15
T16
T17*
T18
T19*
T20
T21*
T22
T23
124
T25
T26
T27*

only and (ii) using primitive rules together with
derived rules established in a previous exercise.

FP—>P Identity
FPv-~P Excluded Middle
F~P & ~P) Non-Contradiction
FP->Q-—->P) Weakening
F (P —Q) v (Q—P) Paradox of Material Implication
FP& ~~P Double Negation

FPeoQe QP

F~P< Q& (-P<Q)

F({(P—->Q—>P)—P Peirce’s Law
FP—->Qv(Q—R)

FP&Q & (~Pe~Q)
FEPoQ&R-SQeoP-oRY—-Q
FP—P&P & Idempotence
FP&<PVP v Idempotence
FPcQ& RS >((P>R < (Q—YS)
FPoQ&RES>PE&R-QE&S)
FPoQ&RS) >PVvR<QVYS)
FPoQ& RS >((PoR)«(QeS))

F (P—Q xA(R—-P)—>(R—->Q)&(P>R)«—(Q—R))
FPoQ >R&PSR&Q)

FP—Q >RVPSRVQ)

FPoQ >((ReoP)o (R Q)

FP& QR > P&Q«—R)

FP>( Q>R < ((P>Q —>(P—->R)
FP->(Q—>R)«<Q—-(P—->R)
FP>P—->Q«P—-Q
FP->Q—->Qe(Q—-P)—>P
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T28
T29
T30*

T31*

T32*

T33
T34
T35
T36
T37
T38
T39

theorems as
derived rules

37

FP>~-Qe&Q—o~P
F~P>P&P
FP&Q VR&S)«

(PVR)& PV S) &(QVR)&(QVS))
FPvQ &RvVS) &

(P&R)V(P&S) V(Q&R)V(Q&Y))
FP->Q&R—-S)

(~P&~R) v (~P&S)) v((Q& ~R) v(Q&YS))

FPv~-P)&Q<Q
FP&~-P)vQeQ
FPv(~-P& Q)< PvQ
FP&(~-PvQ & P&Q
FPPVvP&Q)
FPoP&PVQ)
FP->Q&R)>P&Q<P&R)

Comment. We now consider a special case of the use
of sequents as derived rules. Since it is the conclusion
of a sequent without premises, a theorem or a sub-
stitution instance of a theorem can be written as a line
of a proof with an empty assumption set. For a theo-
rem to be used this way, it must have been proved
already by means of primitive rules alone. The anno-
tation should be the name of the theorem or T# (the
theorem’s number).
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Example.
ProveP - Q,~P > QF Q.
1 (1 P->Q A
2 2) ~P—>Q A
3) Pv-~P T2
1,2 4 Q 1,2,3 SimDil

Comment. In the preceding example, the annotation for
line 3 gives the number of the theorem introduced.
Since this theorem has a name, the annotation
‘Excluded Middle’ would also have been acceptable.

Comment. As with sequent introductions, requiring that theorems
first be proved using only primitive rules is unnecessarily

restrictive.

Using theorems as derived rules, attempt to construct
alternative proofs of sequents appearing in exercise
1.54.
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Truth Tables

2.1

truth value

truth table

truth-
functional
connectives

Truth Tables for Sentences

Definition. Truth and Falsity (abbreviated T and F) are
TRUTH VALUES.

Comment. When an argument is valid, its conclusion
cannot be false when its premises are all true. One way
to discover whether an argument is valid is to consider
explicitly all the possible combinations of truth values
among the premises and the conclusion. In this chapter
we show how to do this. The idea is to assign truth
values variously to the sentence letters of the argument
and see how the premises and the conclusion turn out.
The following rules, codified in TRUTH TABLES
(TTs), enable us to do this.

Comment. For this method to work, it has to be the
case that the truth values of compound sentences are
determined by the truth values of the sentence letters
that appear in them.

Comment. All the sentential connectives introduced in chapter 1

have the property described in the previous comment. Since the
truth values of compound sentences containing these connectives
are functions of the truth values of the component wffs, they are
known as TRUTH-FUNCTIONAL CONNECTIVES. (Not all

English connectives are truth-functional.)
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TT for negation In order for a negation ~¢ to be true, ¢ must be false.

T F
F

Table 2.1 Truth function for negation.

TT for In order for a conjunction (¢ & ) to be true, both con-
conjunction  juncts ¢ and y must be true.

TT for In order for a disjunction (¢ v ) to be false, both dis-
disjunction  juncts ¢ and W must be false.

TT for In order for a conditional (¢ — ) to be false, the ante-
conditional cedent ¢ must be true while the consequent  is false.

TT for In order for a biconditional (¢ <> ) to be true, ¢ and
biconditional \ must have the same truth value.

o v G&y |ovy | 0oy | 0oy
T T T T T T
T F F T F F
F T F T T F
F F F F T T

Table 2.2 Truth functions for the binary connectives.
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Comment. Observe that if a conditional’s antecedent is
false, then the conditional is true no matter what the
truth value of its consequent. Also, if its consequent is
true, then it is true, regardless of the truth value of its
antecedent. These are the truth table analogues of the
derived rules False Antecedent and True Consequent.

By means of these rules we can construct TTs for com-
pound wffs, exhibiting how their truth values are deter-
mined by the truth values of their sentence letters.

Example.

PQR| (P->QVv(~Q&R)
TTT T T F F
TTF T T F F
TFT F TT T
TFF F FTF
FTT T T F F
FTF T TFF
FFT T TT T
FFF T TTF

@ (a) () ()

Table 2.3 TT for the sentence (P — Q) v (~Q & R).
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Comment. By referring to the columns for P and Q, we
construct column (a), for (P — Q), using the TT for
conditionals (see table 2.2). Next, we construct column
(b), for ~Q, (see table 2.1). Column (c), for (~Q & R)
is constructed by referring to the columns for its
conjuncts, ~Q and R and using the TT for conjunction
(see table 2.2). Finally, we construct column (d), for
P - Q) v (~Q & R), by referring to those for its
disjuncts, (P — Q) and (~Q & R) (see table 2.2).

Comment. The column for a given component of a sen-
tence (other than the sentence letters) is placed under
that component’s connective. For example, the column
for (P — Q) in table 2.3 falls under its arrow.

Construct TTs for the following sentences.

Pv(~PvQ

~P&Q)vP

~P—>Q)—>P

PvQv(=P&Q

PvQ—->Rv-~P

Re~PVR&Q)
P&Q&Q—>(Q—-P)

P ~Q) & (P ~Q)
PooQe(PYR—->(-Q—R))
P&QVR&S) > P&R)VIQ&S)

For additional practice, construct TTs for wffs in
chapter 1.
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2.2 Truth Tables for Sequents
validity To determine a sequent’s validity or invalidity, we con-
with TTs struct a single TT for the whole sequent. If there is a

line in the TT where all the premises are true and the
conclusion is false, then the sequent is invalid. If there
is no such line, it is valid.

PQ ~P, Q> (P&Q F-Q

TT F T T F
TF F T F T
FT T F F F
FF T T F T

valid example

Table 2.4 This sequent is valid since there is no line on
which ~P and Q — (P & Q) are both true but ~Q is
false.
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invalid example

invalidating
assignment

Chapter 2

PQR [ ~P—>Q, ((R&P)->Q | Q

TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF

e e e e B B B
M A
b e e e ¢ I B R R |
e e e e e e

Table 2.5 This sequent is invalid since there is at least
one line where ~P — Q and (R & P) — Q are both
true but the conclusion is false—the fourth line.

Definition. An INVALIDATING ASSIGNMENT for
a sequent is an assignment of truth and falsity to its
sentence letters that makes the premises true and the
conclusion false.

Comment. From the TT for an invalid sequent, you can
read off an invalidating assignment. Find a row of the
TT where the premises are all true and the conclusion
is false. The invalidating assignment is given at the left
side of that row.

Example.
An invalidating assignment for the sequent in Table 2.5
assigns truth to P and falsity to Q and R.
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ii*
1i*

v*

viF
vii*
viii*
ix*

x1*
Xii*
X1i1*

X1v*
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Comment. When the sequent in question involves only
two sentence letters, the TT has exactly four lines;
three sentence letters requires eight lines. In general,
when n sentence letters are present, the number of
lines in the TT is 2".

Comment. Consider this special case:If you construct a
TT for the sequent P - Q, Q - R, P & ~R I S you
find that there is no line on which all the premises are
true. Consequently, there is no line on which the
conclusion is false while all the premises are true. Thus
the sequent is valid.

Use TTs to determine whether each of the following
sequents is valid. For each invalid one, find an in-
validating assignment. For each valid one, give a proof.

P&-~-QF~P < Q)
P&£(QVvRFQ&(PVR)
P&£Q—->RFP—>R
PvQ—->RFP—>R
P->QvRFP—>R
P->~P)>(-P—>P)-P
QoRFP->Q&(Q—R)
PvQ,P—>R,~S—>~QF~P
P>QP—>R,~(~R—>QFP
P~Q, Qe ~R R&-~SHPoS
PvQrF(-P—>R)v(~-Q—>R)
PoR—->Pv~Q),~R->PvQF-~Q
~R&~P—->QVvR)F~(Q<R)
P> Q&R —>S),P~-SF~(Q&R)
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XV ~R - ~Q,(~P&R) > ~Q  ~(P < ~R & Q)

Xvi* S—(T<P), Q= (~S<>~T), ~P&R<T—S)F R & ~Q

Xvii* Q> P—o>R&~Q),~Q—>~TvV),U&S<P

F(S = ~U)v ~T

xviii® QVR-DU&T, ~(P<Q),~SvW)—>P
FQvV (S &U)VI(T&W)

2.3 Tautologies

no premises

Comment. Another special case is a valid sequent
without premises. In this case, validity requires that
there be no lines of the TT on which the conclusion is
false, since no premises are present to be considered.

PQ |F P> (-P>Q)

TT TF T
TF T F T
FT T T T
FF T T F

Table 2.6 A valid sequent without premises.
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PQR |[F (PeQ)—(

T
<
l
Z

TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF

44 Tmmmm A A
e L e I I A
AT —AM—A-AA-
AT —AmM—A4TAT

Table 2.7 An invalid sequent without premises.

Definition. A sentence ¢ is a TAUTOLOGY (or, is
TAUTOLOGOUS) when the sequent that has no pre-
mises and has ¢ as its conclusion is valid.

Comment. When a sentence is a tautology, it cannot be
false: its TT has only Ts in the column for the
sentence. Some sentences have only Fs appearing in
their column of a TT; others have both Ts and Fs. The
sentence appearing in table 2.6 is a tautology.

Definition. A sentence that has only Fs in its column of
a TT is INCONSISTENT. A sentence that is neither
tautologous nor inconsistent is CONTINGENT.
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Comment. The sentence appearing in table 2.7 is con-
tingent.

P| P&~P| Pv-~P

T FF TF
F FT TT

Table 2.8 P is contingent, P & ~P is inconsistent,
and P v ~P is tautologous.

PQ (P—->Q—P)—>P
TT T T 7T
TF F T 7T
FT T F T
FF T F T

Table 2.9 (P — Q) — P) — P is tautologous.
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PQ (P&Q)«< (~Pv-~Q)

TT T FFFF
TF F FFTT
FT F FTTF
FF F FTTT

Table 2.10 (P & Q) <> (~P v ~Q) is inconsistent.

Use TTs to establish that all the theorems considered
in chapter 1 are tautologies.

24

indirect TT

Indirect TTs

Comment. TTs provide a way to search systematically
for invalidating assignments. A shorter way of doing
this is the indirect truth table (ITT).

In an ITT, one attempts to build invalidating assign-
ments. When the sequent is valid, it is impossible to
build an invalidating assignment (as in the first ex-
ample below).
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In cases of invalid arguments, an invalidating assign-
ment can be discovered (as in the second example
below). Sometimes one must examine more than one
assignment (as in the third example below).

Example.
Consider the sequent
P - Q~R ->~-QF ~-R — ~P

There is only way for the conclusion (~R — ~P) to be
false: ~R must be true and ~P false. That is, R must be
false and P must be true, as shown below.

P > Q~R 5~QF ~R > -~P
T TF TF F FT

Having established these truth assignments, we now
see if there is any way of making the premises all true
that is compatible with this assignment. In other words,
we need a value of Q to complete the following:

P > Q~R >~QF ~R — -~P

T T TF T TF F FT

The assignment indicated requires Q to be true, in
order for the first premise to be true, but also requires
~Q to be true (hence Q to be false), in order for the
second premise to be true. This is the only way to
make both premises true and the conclusion false, and
it is impossible to achieve. Thus, there are no
invalidating assignments, and the argument is valid.
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Example.

The sequent below has a conditional conclusion. Thus,
if the conclusion is to be false, its antecedent must be
true and its consequent false.

P & Q. Q - R F
F T F

— R
T T TF F F

P
T
The invalidating assignment assigns T to P and F to Q
and R.

Example.
In the sequent below there are three ways to make the
conclusion false. Here is one of them:

~P > Q, ~P>~Q + P&Q
FFT

On this assignment, the second premise is false. Thus,
we have failed to find an invalidating assignment. So
we try a different way of making P & Q false:

P 5 Q  ~P>-~Q - P&Q
FT FT TFF

Here, both premises are true, since they both have false
antecedents. Thus, an invalidating assignment assigns
TtoPandF to Q.
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Exercise 2.4.1

Exercise 2.4.2

ii*
i

v*

vi¥
vii*
viii*
ix*
X*
xi#*
xii*
xiii*

X1v*

xvi*
Xvil*
XVili*

Xix*

XX *

Chapter 2

Use ITTs to determine whether the sequents given in
exercise 2.2 are valid or invalid.

Use ITTs to determine whether the following sequents
are valid. For each invalid one, give an invalidating
assignment. For each valid one, construct a proof.

P—->Q.QrP
PvQ,PFQ
P->Q,~Q—>RFP—>R
Pv~Q,~Q&RFP&R
P~QVvR,~QF~P
P->Q R->S) —->~PFQVR
P->QVvR,Q->S&T,~S+~P
P&~Q->R, P ~RFQ&R)VP
P>Q&~R,~PVvVQ&eSES—>~PVT
~P-Q,P>R,Q—>SFH~RVS
S>Q,~-S>QvT, T>PFP—>QVR
~Q-S5,S->Qv~-T.~-T->P-FQ—>PVR
P>(-Q—->~R&~S),~R<S),~QF ~P
PvQ,~R->PFQo(-T—>~RVYS)
P&S—>RRVT, T>Q&P~-QvUFP—>SVvU
~PeQP->R Q—>SH~RVS
~P>~Q&R),~-R&~PHP&Q
P-o>Q&(~-Q—->P&R) > SvT—>~Q)
FQ—o~(-~S—=T1T)
FPv~Q—-o>~P&~Q) < ~P
Qe ~QFPo ~P
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2.5

counter-
example

English Counterexamples

Definition. An English COUNTEREXAMPLE for an
invalid argument or sequent is an argument that has the
same logical form as the original, but whose premises
are all obviously true and whose conclusion is
obviously false.

Example.
A counterexample for P - Q, Q+ Pis

If Los Angeles is in Canada, then Los Angeles is in
North America.

Los Angeles is in North America.

Therefore, Los Angeles is in Canada.

Comment. The relationships of Los Angeles, Canada,
and North America to one another are public knowl-
edge. The premises are both obviously true, and the
conclusion is obviously false.

Comment. In constructing a counterexample, it is not
generally useful to construct the premises and the
conclusion using either unspecific pronouns or
personal information. For example, given the invalid
sequent above, one might present

If it is raining then there are clouds in the sky.
There are clouds in the sky.
Therefore, it is raining.
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Exercise 2.5.1

Exercise 2.5.2

il
il
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Although one can see in a hypothetical situation that
the premises might be true at the same time as the
conclusion is false, the trouble with this argument as a
counterexample is that the second premise is not
obviously true (you may not be in a position to deter-
mine whether there are clouds in the sky) and likewise
the conclusion is not obviously false.

Similarly, the following is not useful:

If my cousin is intelligent, she will pass logic.
My cousin will pass logic.
Therefore, my cousin is intelligent.

Since it is not general knowledge who your cousin is
and whether or not she is intelligent or will pass logic,
this does not provide a clear counterexample to the
given sequent.

Construct counterexamples for the invalid sequents in
chapter 2.

Give proofs, invalidating assignments, or counter-
examples to establish the validity or the invalidity of
the following sequents:

P>Q ~QVR,RFP
~PvQ,~QVR,~RF ~P
P& Q Qo ~R-~Po~R
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v

vl
vii
viii

ix

X1
xii
Xiil
Xiv
XV
Xvi

XVii
X Viil
X1X
XX
XX1
XX1i

XXiil

XX1V
XXV
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(Q—>P)>R,~QVS,~SF~R—>T
P&(Q—>R),QV~PRVSSTHFTVU
P& ~QRv~Q R SHESVP
PoQ,Qe~RR->PH~Po~R
PoQFROP) & (PoQ)
~R-~Q,Pv~Q, P SESvVv~R
R ~Q,Pv~Q,P—SEFS&R
Po>QVR-S9FP-SVR—->Q
Po>Q&R—->9FP-9H&R—-Q)
P& Q,Q—R—->P,R—> (~-S—>~-Tv~W),~-S&THW
P&Q,Q—->P—-R,R > (-S—>~Tv~-W),~-S&THF ~W
PvQ—>RVS, «(TVvR)—=S, (T=P) &R —-Q),~S R
~PVv~Q),~P>RVS,~Sv-~Q,
Rv~T > W& (Y- ~Q) - ~W-Y)

Pv (QvR), S&~T, ~(~-SvD) = ~P, R>W)&~-WFQ
PviQvR),S&~T,(R>W)&~WFQ
PeoQoeo(-Po~RIFP(QeR)
PQ ~(~R&P,RvS—>~T&QFHT—>~PvQ
PoQRVv~-PT&Q—>~RF~-S&T—>~PVvQ)
PXEQ—o>R<S),~P—>~T,~~RvSFQ—-~T
P&Q—->R,P&~R < Qv -~S,

T&(~Q&~R —>P),(T=>S)V(T>R)FS&R
Rv(P—S), T&~W, (~-TvW)—=-~R, (S = Q) & ~Q I ~P
Rv(PVS), T&~W, ~(~-TvW) = ~R, (S 5 Q) &~Q + P
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Chapter 3

Predicate Logic

3.1

vocabulary

A Formal Language for Predicate Logic

Comment. Sentential logic allows us to study the
logical relations among sentences that hold because of
their structure, insofar as that structure is determined
by the presence of connectives. But sentential logic
cannot handle the similarity between ‘Kareem is tall’
and ‘Akeem is tall’, not to mention ‘Someone is
tall’—these would be represented as P, Q, and R, as if
they had nothing in common. We now introduce a new
language that accommodates this further structure.

Definition. The VOCABULARY OF PREDICATE
LOGIC consists of

¢ SENTENCE LETTERS,

*  CONNECTIVES,

s NAMES,

¢  VARIABLES,

e  PREDICATE LETTERS,

¢ the IDENTITY SYMBOL,

¢  QUANTIFIERS, and

e PARENTHESES.

Sentence letters, connectives, and parentheses are
adopted from the language of sentential logic.
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names

variables

1-place
predicate
letter

2-place

n-place

Chapter 3

Definition. A NAME is a symbol from the following
list:

a, b,c,d, a, bl’ Cys dl’ a,, b2,
Definition. A VARIABLE is a symbol from the
following list:

UV, W, X, Y, 2, U, Vi W X Y Zgs Uy e

Comment. Names and variables are used to refer to
objects in much the same way as names and certain
kinds of pronouns in English. Section 3.2 deals with
translation between English and the language defined
in this section.

Comment. Where there is no possibility of confusion we shall
sometimes use lowercase letters other than those listed above as

names.

Definition. A 1-PLACE PREDICATE LETTER is
any symbol from the following list:
1 I Al 1
AL 2L A

A 2-PLACE PREDICATE LETTER is any symbol
from the following list:
R~ A /-
e L5AG G

In general, an n-PLACE PREDICATE LETTER is
any symbol from the list

n n AN n
A% LN Ay, L2,
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symbol

metavariables
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Comment. Predicate letters with more than one place
are referred to as MANY-PLACE PREDICATE
LETTERS. Predicate letters will sometimes be
referred to as ‘predicates’ for short.

Comment. In practice the superscripts can and will be
omitted. Any of the capital letters may appear as
sentence letters or predicate letters. It is usually
possible to tell how a letter is being used in a wif by
looking at the number of names or variables im-
mediately following it. A capital letter with no names
or variables is a sentence letter, one followed by one
name or variable is a 1-place predicate, and so on.
Also, the letters ‘R’ and ‘S’ are sometimes reserved for
2-place predicates.

Definition. The symbol ‘=" is the IDENTITY SYM-
BOL.

Comment. The identity symbol is used to represent the
relationship of numerical identity, such as, for
example, that Mark Twain is identical to (i.e., one and
the same as) Samuel Langhorne Clemens.

Comment. The Greek letters o, 3, 7, etc. are used as
METAVARIABLES for the names and variables of
predicate logic.
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universal
quantifier

existential
quantifier

expression

wifs

Chapter 3

Definition. A UNIVERSAL QUANTIFIER is any
symbol of the form

Yo
where o 1s a variable.

Comment. Universal quantifiers correspond to the
English word ‘every’.

Definition. An EXISTENTIAL QUANTIFIER is
any symbol of the form

Jo
where o is a variable.

Comment. Existential quantifiers correspond to the
English word ‘some’.

Definition. An EXPRESSION OF PREDICATE
LOGIC is any sequence of items from the vocabulary
of predicate logic.

Definition. A WELL-FORMED FORMULA of predi-
cate logic is any expression in accordance with the
following seven rules:

(1) Sentence letters are wifs.

(2) An n-place predicate letter followed by n names is a

wit,
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Expressions of the form o=B where o and 3 are
names are wifs,

Comment. Although the placement of the identity
symbol superficially resembles that of a connective, it
is in fact a special two-place predicate. For historical
reasons alone it is placed between o and [ rather than
in front of them.

[Definition. Wffs of the form specified in rules 1-3
are the ATOMIC SENTENCES of predicate logic.
Those conforming to rule 3 are also known as IDEN-
TITY STATEMENTS. ]

Comment. We adopt the practice of omitting super-
scripts from predicate letters.

Negations, conjunctions, disjunctions, conditionals,
and biconditionals of wffs are wifs.

Comment. The formation rules of chapter 1 are
subsumed by this clause.

If ¢ is a wff, then the result of replacing at least one
occurrence of a name in ¢ by a new variable o (i.e.,
o not in ¢) and prefixing Vo is a wff.

[Definition. Such wffs are called UNIVERSALLY
QUANTTIFIED wffs, or UNIVERSAL wffs.]
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(6) If ¢ is a wif, then the result of replacing at least one
occurrence of a name in ¢ by a new variable o (i.e.,
o not in ¢) and prefixing Jo is a wif.

existential wff [Definition. Such wffs are called EXISTENTIALLY
QUANTIFIED wffs, or EXISTENTIAL wifs. ]

(7) Nothing else is a wff.

Examples.

Wifs of this language include the following:
((Fa v Fb) — Gab)
JyFy
Vx(Fx = Gx)
VxVy(Rxy — Ryx)
(AxFx < VxGx)
~Ix(Fx & ~VyGy)
(3xFx - P)
VxdyFyxb
~a=b
VX X=X
VxVy(x=y — y=x)
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Exercise 3.1.1 Which of the following expressions are wifs? If an ex-

vii*
viii*
ix*
X*
xi#*
xii*
xiii*

Xiv¥

Xvi*
xvii*
xviii*
xix*
Xx*
xxi¥*
Xxi1*
xxiii*
XX1v¥

XXV*

pression is a wff, say whether it is an atomic sentence,
a negation, a conditional, a conjunction, a disjunction,
a biconditional, a universal, or an existential. (Note:
Any wff must fall into exactly one of these categories.)

Fz

VxGac

VxGceax

IxVy(Gxy & Gyx)
Vx(Gxy < dyHy)
Jx(Ax — VxFxx)
VxVy(Fxy — Vz(Hxyz & Jz))
VxFxx <> VxVyFxy
~Vx~Jz(Hz v Jx)

Ga — Vx~(Ha v Fxx)
P — Gab

~(P & ~3IxFx)

Vx(Fx) & P

Jy(Fyyy & P)
Vxyz(Fzx <> Hxyz)
b=b

(a=a)

P=c

Fa=Fa

Vz(Fz — a=b)
Vx(x=x)

Ix(Fx=Gx)

~Vx(Fx & Jy x=y)
(~a=b &> ~Vx(Fxa & Fbx))
Vx3Iy(~x=y = y=~X)
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quantifier
convention

non-identity
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Comment. When a wif contains an uninterrupted se-
quence of quantifiers of the same type, existential or
universal, it is often convenient to omit repetitions of 3
orV.

Examples.
The expression
Vxyz(Fxy & Gyz <> Hzx)
will be read as shorthand for
VxVyVz(Fxy & Gyz < Hzx).

The expression
dxyVzw(Fxyz & Gwx — ~Hzx)
is to be read as
IxdyVzVw(Fxyz & Gwx — ~Hzx).

We introduce the special symbol # that may be used to
abbreviate statements of the form ~o. = [3 thus: o # f3.
It will be useful to bear in mind that sentences of this
form are negations, not atomic.

Comment. As with the parenthesis-dropping conven-
tions introduced in chapter 1, the formulas allowed by
the conventions here are not strictly well-formed. They
are merely acceptable abbreviations for wifs.
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open formula Definition. An OPEN FORMULA is the result of

scope

replacing at least one occurrence of a name in a wff by
a new variable (one not already occurring in the wif).

Comment. Open formulas are not wifs and hence never
appear as sentences in proofs. The notion of an open
formula is used to present the rules of proof for
predicate logic.

Examples.
Fx is an open formula.
It occurs as part of the wif VxFx.

Fxy is an open formula.
It occurs as part of the open formula dyFxy, which in
turn is part of the wif VxJdyFxy.

Definition. The SCOPE of a quantifier in a given
formula is the shortest open formula to the right of the
quantifier.

Examples.

In the wif
(VxFx & Jy(Fy — Gy)),

the scope of Vx is the expression
Fx

and the scope of Jy is the expression
(Fy — Gy).
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In the witf

Jy(Fy & Vz(Gz v ~Rzy)),
the scope of Jy is

(Fy & Vz(Gz v ~Rzy)),
but the scope of Vz is

(Gz v ~Rzy).
wider and Definition. A quantifier whose scope contains another
narrower other quantifier is said to have WIDER SCOPE than
scope the second. The second is said to have NARROWER
SCOPE than the first.
bound Definition. A variable, o, that is in the scope of a
variable quantifier for that variable (i.e. Vo or Ja) is called a

BOUND VARIABLE. A variable that is not bound by
a quantifier is said to be UNBOUND or FREE,

Exercise 3.1.2* Identify all the open formulas appearing in exercise
3.1. If an open formula appears in an expression that is
not well-formed, give an example of a wff in which it
might appear.

Exercise 3.1.3 In the following sentences, determine the scopes of all

quantifiers.

i Vx(Px — VzRxz)
il ~VxPx < VxVzRxz
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VxPx — Vz~VxRxz

iv Vz(Px — VxRxz)

A Vx3yFyxb

vi Jy(Fy & Vz(Gz v ~Rzy))

vii VxVy(Fxy — Vz(Hxyz & Jz))

viii VxVy(Rxy — Ryx)

ix Jz3x(Fxz — VyGyxa)

X Ix(x=a — VyGyaa)

3.2 Translation of English to Quantified Wifs
translation Definition. A translation scheme for the language of
scheme predicate logic consists of a pairing of predicate letters

with English predicate phrases and of names of
predicate logic with names in English. We also include
metavariables with the predicates and associated
phrases to indicate the appropriate order for names and

variables.

Example.

According to the translation scheme
Lof: o likes B
a: Abigail,

the sentence

‘Abigail likes everything’
is translated as

VxLax.
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Comment. It is possible to give several non-equivalent
translation schemes for sentences of English, depend-
ing on how many places are assigned to the predicates.

Example.

Using the translation scheme
Fou: o is the father of Mary
a: John,

F is specified as a l-place predicate. Using this
scheme, the sentence

John is Mary’s father
is translated as

Fa.

Using the translation scheme

Fo3: o is the father of B
a: John
b: Mary,

F is specified as a 2-place predicate with the first
position (occupied by o) corresponding to the subject
of the phrase ‘is the father of” and the second (occu-
pied by P) corresponding to its object. Using this
scheme, the sentence

John is Mary’s father
is translated as

Fab.
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Comment. The choice of whether to represent English
phrases with one-place or many-place predicates is
dependent on the degree of structure that must be
included in order for an argument to be analyzed
adequately. In general, more detail is better than less
detail, since arguments may be labeled invalid
erroneously if insufficient detail is represented.

Comment. The logical forms of many English sen-
tences can be captured with the quantifiers introduced
in section 3.1. The following is an incomplete list of
some of the more common sentences.

Variants whose logical form is
VxFx

include the following:
Everything is F.
All things are F.

Variants whose logical form is
Vx(Fx — Gx)

include the following:
EveryFisa G.
All Fs are Gs.
IfitsanF, it’s a G.
Everything that is F is G.
Anything that is an Fis a G.
Any Fis G.
If something is an F, itis a G.
Only Gs are Fs.
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There are several variants having the form
Vx(Fx - ~Gx)
including these:
No Fs are Gs.
Not a single F is G.
Fs are never Gs.
Every Fis not G.

Variants with the form
dxFx

include the following:
Something is F.
There exists an F.
There is at least one F.

Variants having the form
dx(Fx & Gx)
include the following:
Some Fs are Gs.
At least one Fis G.
There exists an F that is G.

Comment. Notice the difference between translating
‘Every F is G’ (equivalently ‘All Fs are Gs’) and
‘Some Fs are G’. In the first case, an arrow is used in
the scope of a universal quantifier. In the second, an
ampersand is the appropriate connective in the scope
of the existential quantifier.
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Comment. When translating sentences of English
without the use of the identity symbol, the distinction
between ‘Some F is G (At least one F is G’) and
‘Some Fs are G” (“At least two Fs are G’) cannot be
represented. We comment on the translation of ‘at least
n’ below.

Variants with the form
o=P
include the following:
o is P.
o is (numerically) identical to P.
o is the same (entity) as J3.
o and B are one and the same.
o is the very same individual as 3.

Numerical quantities can be expressed using the quanti-
fiers in conjunction with the identity symbol.

The existential quantifier expresses ‘at least one’.
Other numerical quantities can be expressed by assert-
ing the existence of non-identical objects. Thus, for

example:
dxy xzy At least two
dxyz((xzty & x#z) & y#z) At least three

The sentence ‘There are at least two dogs’ may be
translated IxAy((Dx & Dy) & x#y).
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There are exactly n objects if there are at least n, and
all objects are identical to one or other of those #. For
example:
IxVy x=y Exactly one
Ixy(xzy & Vz(z=x v z=y)) Exactly two
Ixyz(((x2y & x#2) & y#27)
& Vw((w=x v w=y) v w=z)) Exactly three

There are at most n objects if there are exactly zero, or
exactly one, etc., up to exactly n objects. For example,
‘There are at most two dogs’ may be translated as:
~3xDx v (Ax(Dx & Vy(Dy — y=x)) v

Ixy(((Dx & Dy) & x#y) & Vz(Dz — z=x Vv z=y))
This is equivalent to saying that there are not three
distinct dogs, i.e.:
~Ixyz((Dx & (Dy & Dz)) & (x#y & (x#z & y#z)))

Comment. There are many subtleties in the translation
of English quantifier phrases into the language of
predicate logic. Such phrases often introduce ambi-
guity into the expressions of English. The exercises
below illustrate some of the subtleties and ambiguities.
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Give translation schemes and translate the following
sentences of English into the language of predicate
logic. If a sentence is ambiguous, give all the reason-
able translations of it.

(1-22: Translate using one-place predicates only.)

1%
o
3
4%
5%
6%
75
]

Ok
10%*

11

12%
13
14
15%*

16*

L7
18*
19*
20%

All dogs are mammals.

Some sharks are ovoviviparous.

No fishes are endothermic.

Not all fishes are pelagic.

Reptiles and amphibians are not endothermic.

Some primates and rodents are arboreal.

Only lagomorphs gnaw.

Among spiders, only tarantulas and black widows are
poisonous.

All and only marsupials have pouches.

No fish have wings unless they belong to the family
Exocoetidae.

Some organisms are chordates and some organisms are
molluscs, but nothing is both a chordate and a mollusc.
None but phylogenists are intelligent.

Animals behave normally if not watched.

Animals behave normally only if not watched.

Some sharks are pelagic fish, but not all pelagic fish
are sharks.

If Shamu is a whale and all whales are mammals, then
Shamu is a mammal.

No sparrow builds a nest unless it has a mate.

No organism that is edentulous is a predator.

All predators are not herbivorous.

Not all predators are carnivorous.



74 Chapter 3

21% A mammal with wings is a bat.

22% A mammal with wings is flying.

(23-29: Try these first with one-place predicates, then with many-
place predicates.)

23%* Shamu can do every trick.

24%* Shamu can do any trick.

25% Shamu cannot do every trick.

26%* Shamu cannot do any trick.

27%* If any whale can do a trick, Shamu can.
28% If every whale can do a trick, Shamu can.
29% If any whale can do a trick, any whale can do a trick.
(30-57: Translations with many-place predicates.)

30* Godzilla ate Bambi.

31* Something ate Bambi.

32% Godzilla ate something.

33 Bambi ate everything.

34% Everything ate Bambi.

35% Something ate something.

36* Something ate everything.

37* Everything ate something.

38%* Everything ate everything.

39% Everything ate itself.

40* Something ate itself.

41* Nothing ate itself.

42% Something ate nothing.

43% Everyone said something to everyone.
44%* Everyone said something to someone.
45% Everyone said nothing to someone.

46* No one said anything to anyone.

47% There is a reptile smaller than a cat but larger than a

dog.
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48*
49*
50*
51%
52%
53*
54%*

55%

56*
57

75

Some fishes swim slower than humans.

Some fishes are smaller than every mammal.

Some whales eat only fast-moving fishes.

Some whales do not eat any fast-moving fishes.

If anything eats fast-moving fishes, sharks do.

Jaguars’ tails are longer than ocelots’ tails.

If an organism is symbiotic with a clown fish then it is
a sea anemone.

The phalanges of birds are homologous to the phalan-
ges of humans whereas the eyes of octopi are analo-
gous but not homologous to the eyes of mammals and
birds.

Some whales eat more than all fishes.

There is a monkey who grooms all and only those
monkeys who do not groom themselves.

(Translations involving the identity symbol.)

58%*
59
60*
61*
62%
63

64

65
66
67
68
69
70

Exactly one cheetah exists.

There is only one Paris.

Bambi ate at least two trees.

Bambi ate everything except himself.

Every dog has exactly one tail.

Godzilla ate Bambi, and something else ate Godzilla.
Bambi was not eaten by Godzilla but by something
else.

Godzilla ate nothing but Bambi.

Godzilla ate everything except Bambi.

Only Bambi is afraid of Godzilla.

Nothing but Godzilla likes Bambi.

There is a fish that’s bigger than all the others.

Nobody likes somebody who eats everything except
Bambi.
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3.3

universa-
lization

(D

2

Primitive Rules of Proof

Comment. We introduce six new primitive rules of
proof: universal elimination, universal introduction,
existential introduction, existential elimination, iden-
tity introduction, and identity elimination. To allow
succinct statements of the first four of these, the
notions of wuniversalization, existentialization, and
instance are defined.

Definition. A UNIVERSALIZATION of a sentence
with respect to a given name occurring in the sentence
is obtained by the following two steps:

Replace all occurrences of the name in the sentence by
a variable ¢, where o does not already occur in the
sentence.

Prefix Vo to the open formula resulting from step 1.

Examples.
Universalizations of
(Fa — Ga)
include
Vx(Fx — Gx)
and Vy(Fy — Gy).
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Universalizations of
Faa

include
VxFxx

and VyFyy.

Definition. An EXISTENTIALIZATION of a sen-
tence with respect to a given name occurring in the
sentence is obtained by the following two steps:

Replace at least one occurrence of the name in the sen-
tence by a variable o, where o does not already occur
in the sentence.

Prefix da to the open formula resulting from step 1.

Comment. Notice the difference between step 1 in the
definition of universalization and step 1 in the
definition of existentialization. Universalization re-
quires replacement of all occurrences of the name by
with a.

Examples.
Existentializations of
(Fa — Ga)
include
dx(Fx — Gx),
dx(Fa — Gx),
and dy(Fy — Ga).
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Existentializations of
Faa

include
IxFxx,
JxFax,

and JyFya.

Definition. An INSTANCE of a universally or exis-
tentially quantified sentence is the result of the follow-
ing two steps:

(1) Remove the initial quantifier,

(2) In the open formula resulting from step 1, uni-
formly replace all occurrences of the unbound
variable by a name.

Comment. This is called INSTANTIATING the sen-
tence. The name is called the INSTANTIAL NAME.

Examples.

The sentence
VxFx

has instances
Fa, Fb, Fc, etc.

The sentence
JIx(Fx & Gx)
has instances
(Fa & Ga), (Fb & Gb), (Fc & Ge), etc.
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The sentence
IxVy(Fxy — Gy)
has instances
Vy(Fay — Gy), Vy(Fby — Gy), etc.

Exercise 3.3.1* Pair wffs and their instances from the list of sentences
below. Some formulas may appear in several pairs.
Others may appear in none.

i VxFax

il dx(Fxa & VyGyxa)
iii JxFax

iv Fab

v JyVxFyx

vi dzx(Fxz & VyGyxa)
vii VxyFxy

viii VxFxa

ix Jzx(Fxz & VyGyxz)
X Fba & VyGyba

Comment. The primitive rules of proof for predicate
logic include all the primitive rules from chapter I.
There are also introduction and elimination rules for
the two quantifiers and for the identity symbol. Two of
the new rules have conditions that must be met for the
application of the rules to be correct.
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universal-elim Given a universally quantified sentence (at line m),

universal-
intro

conclude any instance of it.

Condition:

Annotation:
Assumption set:
Also known as:

None.

m VE

same as line m.
Universal Instantiation.

Examples.

(a)

1 (1) VxFx A

1 (2) Fa 1 VE
1 3) Fb 1VE
(b)

1 (1) VyRyy A

1 (2) Rbb 1 VE

Given a sentence (at line m) containing at least one

occurrence of a name, conclude a universalization of
the sentence with respect to that name.

Condition:

Annotation:
Assumption-set:
Also known as:

The name in question must not
occur in any assumptions in #’s
assumption set.

m V1

same as line m.

Universal Generalization.
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Examples.

(@)

1 (1) VxFx A

1 (2) Fb 1VE
1 (3) VxFx 2 VI
1 (4) VyFy 2 VI
(b)

1 (1) Vx(Fx — Gx) A

1 (2) Fa—Ga 1 VE
3 (3) VxFx A

3 (4) Fa 3VE
1,3 (5) Ga 24 —>E
1,3 (6) VxGx 5VI

Example of violation of the VI condition.

(©

1 (1) Vx(Fx — Gx) A

2 (2) Fa A

1 (3) Fa—>Ga 1 VE
1,2 4) Ga 2,3 -E
1,2 (5) VxGx 4VI1

Comment. Ordinarily we cannot conclude VxFx
merely from Fa—the fact that one thing is F doesn’t
guarantee that everything is F! The condition on VI
ensures that we do not make this mistake. If the
sentence Fa is true, and furthermore would still be true
no matter what the name denotes, then clearly every-
thing is F, so we can conclude VxFx. When the condi-
tion on VI is met, then we are in such a situation: if we
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prove Fa from assumptions that do not contain the
name a and hence say nothing in particular about its
referent, then we could just as well have used a
different name, say b, and proved Fb. In fact, when the
condition on VI is met, any proof of Fa can be turned
into a proof of Fb just by replacing any involved
occurrences of the name a by the name b. This is
sufficient to guarantee that everything is F; hence, we
can conclude VxFx.

Given a sentence (at line m) containing at least one
occurrence of a name, conclude an existentialization of
that sentence with respect to that name.

Condition: None.

Annotation: m 3l
Assumption-set. same as line m.
Also known as:  Existential Generalization.

Examples.

(a)

1 (1) Fa A

1 (2) dIxFx 141
(b)

1 (1) Vx(Fx - Gx) A

2 (2) Fa A

1 (3 Fa—>Ga 1VE
1,2 4) Ga 2,3 >E
1,2 (5 Fa&Ga 24 &1

1,2 (6) 3Ix(Fx & Gx) 531
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(c)
1 (1)
1 2)
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VxFax A
JyVxFyx 131

Given a sentence (at line m) and an assumption (at line
i) that is an instance of some existentially quantified

sentence that is present (at line k), conclude the given

sentence again.

Condition:

Annotation:

The instantial name at line i must
not appear in the sentence at line &
or in the sentence at line m. Also, it
must not appear in any of the as-
sumptions belonging to the assump-
tion set at line m, other than the
instance i itself.

k.m 3JE (i)

Assumption set:  all assumptions at line m other than

Examples.
(a)

1 (1)
2 (2)
2 (3)
2 4)
1 (5

i, and all assumptions at line k.

IxFx A
Fa A
Fa v Ga 2vI
Ix(Fx v Gx) 341

Ix(Fx v Gx) 1,4 JE (2)
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(b)

1 (1) Ix(Fxx —>P) A

2 (2) Faa—>P A

3 (3) VxFxx A

3 (4) Faa 3 VE

2.3 B5) P 2.4 —E
1,3 6) P 1,5 3E (2)

Examples of violation of JE condition.

@

1 (1) dxFx A

2 (2) Fa A

3 3 Ga A

2.3 (4) Fad& Ga 2,3 &l

2.3 5)  Ix(Fx & Gx) 441
wrong! 1,3 (6) Ix(Fx & Gx) 1,53E (2)

(b)

1 (1) dxFx A

2 (2) Fa A
wrong! 1 (3) Fa 1,23E (2)

(c)

1 (1) dxFax A

2 (2) Faa A

2 (3) dxFxx 241
wrong! 1 (4) IxFxx 1,33E (2)
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Comment. If all we know is that something is F, we are
not entitled to reason as if we know what it is that is F.
As in the case of VI, a use of JE that meets the
conditions above and uses a certain instantial name can
be turned into a proof of the same conclusion from the
same assumptions but using any different instantial
name. This shows that the conclusion does not rest on
any assumptions about the actual identity of the thing
that is said to exist. That is, if we apply JE to IxFx by
discharging the assumed instance Fa, the conditions
ensure that we do not mistakenly use any information
about the referent of ‘a’ in particular. After all, 3xFx
says only that something is F—it doesn’t tell us which
individual is F.

Conclude any sentence of the form o=0.

Condition: None.

Annotation: =1
Assumption set. Empty.

Example.
(1) c=c =l

Comment. An identity statement of the form o=a, like
a theorem, requires no assumptions to justify its asser-
tion.
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identity-elim Given a sentence ¢ (at line m) containing a name Q,
and another sentence (at line n) that is an identity

statement containing o and another name f3, conclude a
sentence that is the result of replacing at least one

occurrence of o in ¢ with [3.

Condition:

Annotation:

None.
m,n =E

Assumption set:  'The union of the assumption sets at

lines m and n.

Also known as:  Leibniz’s Law, Substitutivity of

Examples.
(a)

1 (1)
2 (2)
1,2 (3)
(b)

1 (1)
2 (2)
1,2 (3)
1,2 4)
()

1 (1)
2 (2)
1 (3)
1,2 4)
1,2 (5)

Identity

Fa A

a=b A

Fb 1,2=E
Fa & Ga A

b=a A

Fb & Ga 1,2=E
Fb & Gb 1,2=E
Vx(Fxa — x=a) A

Fba A

Fba — b=a 1VE
b=a 2.35E

Vx(Fxb — x=b) 1,4 =E
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S87*
S88*
S89*
S90
S91*
S92%*
S93*
S64
S95%
S96*
S97
S98
S99
S100
S101*
S102%*
S103

87

Comment. The rule of identity elimination is not regarded as valid
in all contexts. For instance, if Frank believes that Mark Twain is a
novelist then, even though Twain=Clemens, it does not follow that
he believes Samuel Langhorne Clemens is a novelist (if, for
example, he has heard the name "Twain" but never "Clemens").
For historical reasons, contexts where the rule fails, such as belief
reports, are called intensional contexts in contrast to the
extensional contexts provided by the ordinary predicates which the

language developed in this chapter is intended to represent.

Prove the following sequents, using the primitive rules
of predicate logic. You may also use derived sentential
rules.

Ix(Gx & ~Fx), Vx(Gx — Hx) F dx(Hx & ~Fx)

dIx(Gx & Fx), Vx(Fx — ~Hx) F Ix~Hx

Vx(Gx — ~Fx), Vx(~Fx — ~Hx) - ¥x(Gx — ~HXx)
dx(Fx & Ga), Vx(Fx — Hx) - Ga & 3x(Fx & Hx)
Vx(Gx — y(Fy & Hy)) F Vx~Fx — ~3zGz

Vx(Gx — Hx & Jx), Vx(Fx v~Ix = Gx) - Vx(Fx — Hx)
Vx(Gx & Kx <> Hx), ~3x(Fx & Gx) - Vx~(Fx & Hx)
Vx(Gx = Hx), Ix((Fx & Gx) & Mx) - dx(Fx & (Hx & Mx))
Vx(~Gx v~Hx), Vx((Jx — Fx) — Hx) - ~3x(Fx & Gx)
~3x(~Gx & Hx), Vx(Fx — ~Hx) - Vx(Fxv~Gx— ~Hx)
Vx~(Gx & Hx), Ix(Fx & Gx) - Ix(Fx & ~Hx)

Ix(Fx & ~Hx), ~3x(Fx & ~Gx) F ~Vx(Gx — Hx)
Vx(Hx — Hx & Gx), dx(~Gx & Fx) - Ix(Fx & ~Hx)
Vx(Hx — ~Gx), ~3Ix(Fx & ~Gx) - Vx~(Fx & Hx)
Vx(Fx & Gx) F VxFx & VxGx

IxFx — Vy(Gy — Hy), IxIx —» IxGx F Ix(Fx & Jx)—>3zHz
dxFx v 3xGx, Vx(Fx — Gx) - dxGx
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S104
S105*
S106
S107*
S107

S109*
S110
S111*

S112*
S113
S114
S115
S116
S117*
S118
S119
S120
S121
S122
S123*
S124
S125%
S126
S127*
S128
S129

S130*
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Vx(Fx — ~Gx) - ~3x(Fx & Gx)
Vx(Fx v Hx — Gx & Kx), ~Vx(Kx & Gx) - dx~Hx
Vx(Fx & Gx — Hx), Ga & VxFx I Fa & Ha
Vx(Fx & VyGy) F VxFx v Vx~Fx
Vy(Fa— FxGx — Gy)), Vx(Gx — Hx), Vx(~Jx = ~Hx)

F Ix~Jx — ~Fa v Vx~Gx
Vx(Dx — Fx) F Vz(Dz — (Vy(Fy — Gy) — Gz))
IxFx <> Vy(Fyv Gy - Hy), IxHx, ~Vz~Fz I Ix(Fx & Hx)
VxFx F ~3IxGx > ~(Ax(Fx & Gx) & Vy(Gy — Fy))

Vx(dyFyx — VzFxz) - Vyx(Fyx — Fxy)
Ix(Fx & VyGxy), Vxy(Gxy = Gyx) - Ix(Fx & VyGyx)
Ix~Vy(Gxy — Gyx) F IxIy(Gxy & ~Gyx)
Vx(Gx— Vy(Fy —Hxy)), Ix(Fx & Vz~Hxz) - ~VxGx
Vxy(Fxy — Gxy) F Vx(Fxx — Jy(Gxy & Fyx))
Vxy(Fxy — ~Fyx) F ~3xFxx
Vxdy(Fxy & ~Fyx) - dx~VyFxy
Vy(3@x~Fxy — ~Fyy) b Vx(Fxx — VyFyx)
IxFxx — VxyFxy F Vx(Fxx — VyFxy)
a=b b=a
a=b & b=c - a=c
a=b, b#c I a#c
Fa & Vx(Fx — x=a), I3x(Fx & Gx) I Ga
Vx x=x — IxFx, Vx(~Fx v Gx) - 3Ix(Fx & Gx)
Vx(Fx — Gx), Vx(Gx — Hx), Fa & ~Hb - a#b
Ix((Fx & Vy(Fy — y=x)) & Gx), ~Ga I ~Fa
IxVy((~Fxy—>x=y) & Gx) - Vx(~Gx—dy(y#x &Fyx))
Ix(Px & (Vy(Py — y=x) & Qx)), Ix~(~Px v ~Fx)

F dx(Fx & Qx)
Vx3JyGyx, Vxy(Gxy = ~Gyx) F ~JyVx(xzy — Gyx)



Chapter 3

89

3.4

Exercise 3.4.1

S150*
S151
S152
S153
S154
S155%
S156+%
S157*
S158
S159
S160*
S161

QE

(derived rule)

Sequents, Theorems, and Derived Rules of Proof

Prove the following sequents, using the primitive rules
from chapter 3 and any of the primitive or derived
rules from chapter 1.

~VxPx =+ 3x~Px Quantifier Exchange
~JxPx - Vx~Px QE
~Vx~Px = 3xPx QE
~dx~Px 4 VxPx QE
Vx(Px & Qx) 4+ VxPx & VxQx Confinement
Vx(Px > Q)4 IxPx = Q Conf
VxPx v ¥xQx F Vx(Px v Qx) Conf
Ixy(Px & Qy) 4+ IxPx & IxQx Conf
Jx(Px v Qx) - JxPx v 3xQx Conf
dx(Px - Q) 1 VxPx = Q Conf
P — 3xQx 4+ Ix(P — Qx) Conf
P — VxQx - Vx(P — Qx) Conf

Comment. The important quantifier-exchange rules es-
tablish that an initial tilde can always be moved to the
right of an adjacent quantifier, changing the quantifier
from a universal to an existential (or vice versa). Also,
a tilde that immediately follows an initial quantifier
can be moved to the front of the sentence provided,
again, that the quantifier is changed as just described.
Although the above versions of the rules (S150-S153)
involve quantifications of a simple formula, it is easily
recognizable that the proofs of these sequents do not
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Exercise 3.4.2

T40
T41
T42
T43
T44
T45
T46
T47
T48
T49
T50
T51
T52
T53
T54
T55
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depend on the simplicity of the quantified formula.
QUANTIFIER EXCHANGE (QE) may thus be used
as a derived rule of proof as below.

Example.

1 (1) dx~(Fx & Gx) A

2 (2) IxGx—->Vx(Fx&Gx) A

1 (3) ~Vx(Fx & Gx) 1 QE

1,2 4) ~3dxGx 2,3 MTT
1,2 (5) Vx~Gx 4 QE

Prove the following sequents, using any of the
primitive or derived rules established so far.

F Vx(Fx — Gx) — (VxFx — VxGx)
F Vx(Fx — Gx) —» (IxFx — 3xGx)
F dx(Fx v Gx) <> IxFx v IxGx

F Vx(Fx & Gx) <& VxFx & VxGx

F Ix(Fx & Gx) — IxFx & 3xGx

F VxFx v VxGx — Vx(Fx v Gx)

F (@xFx — 3xGx) — Ix(Fx — Gx)
F (VxFx — VxGx) — Ix(Fx — Gx)
F ~Vx(Fx <> Gx) v (VxFx <> VxGx)
F ~Vx(Fx <> Gx) v (AxFx ¢ dxGx)
F ~Vx(P & Fx) < (P — ~VxFx)

F ~dx(P & Fx) <> (P — ~3xFx)

F Vx(P v Ex) <> (~P — VxFx)

F 3x(P v Fx) & (~P — JxFx)

F Vx(Fx - P) & (IxFx —» P)

F ~dx(Fx — P) <> ~(VxFx —» P)
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T56 FVx(Fx & P) > (VxFx < P)
T57 FVx(Fx & P) - 3AxFx < P)
T58 F (3xFx & P) - Ix(Fx & P)
T59: F (VxFx < P) » Ix(Fx & P)
T60 F Vx3dy x=y

T61 F Vx(Fx <> Jdy(x=y & Fy))
T62 F Vx(Fx <> Vy(x=y — Fy))
T63 F Vxy(Rxy <> x=y) > VxRxx

prenex form  Comment. The quantifier-exchange rules and the confinement rules
(S154-S151) indicate that any sentence may be converted into an
equivalent sentence in which no connective is outside the scope of
any quantifier in the formula. Such a sentence, called a PRENEX
sentence, has all its quantifiers in a row at the beginning of the

sentence.

Exercise 3.4.3 For each of the following, find a prenex equivalent and prove the

equivalence.
1* Vx(Px — VzRxz)
2% Jy(Fy&Vz(Hyz & Jz))
3% IxFxa — VyGyaa
4 ~VxFx — dxHx
5% ~3Ix(JyFyx — ~VzGzx)

Find prenex equivalents for the other non-prenex sentences in this

chapter and the next.
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finite
interpretation

universe

predicate
extensions

truth-value
specifications

Finite Interpretations and Expansions with One-
Place Predicates without Identity

Definition. A FINITE INTERPRETATION for a set
of symbolic sentences (containing one-place predicates

but no many-place predicates) consists of three

components:

A finite set of objects called the UNIVERSE or
DOMAIN. The universe must contain at least one
object.

An EXTENSION for each of the predicates in
the sentences. Each extension is a (possibly emp-
ty) subset of the universe containing those objects
to which the predicate applies.

TRUTH- VALUE SPECIFICATIONS for the
sentence letters in the sentences. Each of the
sentence letters is paired with the specification
True or with the specification False.

Comment. Such an interpretation is finite because its

universe is a finite set. In the rest of this section, we
will use ‘interpretation’ as shorthand for ‘finite

interpretation’.
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Comment. Given an interpretation for a set of
sentences, it will be possible to determine truth values
for the sentences in the set.

Example.
Here is a conditional sentence and an interpretation in
which it can be evaluated:

Vx(Fx v ~Gx) — P v Ix(Gx & ~Fx)

U: {ab,c}
F: {ab}
G: {b}

P is False

In this interpretation the antecedent of the sentence is
true since everything in the universe is either F or not
G (a and b are both F, ¢ is not G).

The consequent of the conditional is false, since both
disjuncts are false. (P is specified false. The existential
wif is false because there is nothing in the extension of
G that is not also in the extension of F.)

The conditional is therefore false.
Comment. The procedure for determining the truth

values of sentences in an interpretation for them is
given more precisely in section 4.2.
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Definition. The EXPANSION OF A UNIVERSAL
WFF relative to a universe of n elements consists of »n
conjuncts, where the nth conjunct is an instance of the
formula with the name of the nth element in the uni-

verse as the instantial name. (We refer to this as a
UNIVERSAL EXPANSION for short.)

Comment. Strictly speaking, all conjunctions have
exactly two conjuncts. Expressions having the form ¢
& y & ... are unproblematic, however, because of the
associativity of & (S40). So, it is acceptable to use the
notion of a conjunction with more than two conjuncts
in the definition of a universal expansion. Likewise,
because of the associativity of v (S41), we use the
notion of a disjunct with more than two disjuncts in the
definition of an existential expansion below.

Example.
The expansion of
Vx(Fx — Gx)
in the universe {a} is
(Fa — Ga).
In the universe {a,b} its expansion is
(Fa — Ga) & (Fb — Gb).
In the universe {a,b,c} its expansion is
(Fa — Ga) & (Fb — Gb) & (Fc — Gc),
and so on.
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Definition. The EXPANSION OF AN EXISTEN-
TIAL WFF relative to a universe of n elements
consists of n disjuncts, where the nth disjunct is an
instance of the formula with the name of the nth ele-

ment in the universe as the instantial name. (EXIS-
TENTIAL EXPANSION for short.)

Example.
The existential
dx(Fx & Gx)
expands to
(Fa & Ga) v (Fb & Gb) v ...
for the universe {a,b, ...}.

Comment. In cases where quantifiers overlap, expansion
may take several steps, starting with the quantifier with
the widest scope and then expanding those with
narrower scope. Expansion is complete when no
quantifiers remain.

Example.
In the universe {a,b}
Vx(Fx — JyGy)
is first expanded to
(Fa — JyGy) & (Fb — JyGy),
then to
((Fa —>(Ga v Gb)) & (Fb — (Ga v Gb)).
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Comment. The truth values of complex sentences in a
given interpretation are determined as follows.

(i) Construct the expansions of all universal and exis-
tential formulas, then assign truth values for the
resulting quantifier-free sentences according to
steps ii—iv below. The truth value of a quantified
sentence is the truth value of its expansion.

(ii) Sentence letters have the truth values directly
assigned to them in the interpretation.

(iii) Formulas of the form Fo, where F is a predicate
and o is a name, are true if the object o is in the
extension of F and false otherwise.

(iv) The truth values for the sentential connectives are
determined according to the usual truth-functional
rules for the connectives.
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Give the expansions for the following sentences
(a) for the universe {a}

(b) for the universe {a,b}

(c) for the universe {a,b,c}

VxFx

dxFx & P

VxFx — dxGx

Vx(Gx <> P) v VxHx

Ha v 3xGx

Jx(Fx v Hx)

VxFx < Ix(Fx & ~Hx)
~Vx(Fx & Gx)

~Vx(Fx & ~VyGy)
~(VxGx & Ix(Hx & ~Fx))

Say whether the sentences in exercise 4.1.1 are true in
the following interpretations:

U: {a}, F:{a}, G: {}, H:{},
P is False

U: {a,b}, F: {a}, G:{ab}, H:{ },
P is True

U: {a,b,c}, F: {abc}, G: {ab}, H: {b},
P is False
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4.2

model

countermodel

Finite Countermodels for Arguments with One-
Place Predicates without Identity

Definition. A MODEL for a set of sentences is an
interpretation in which all the sentences in the set are
true.

Definition. A COUNTERMODEL for a given argu-
ment is a model for the premises in which the
conclusion is false.

Comment. The idea behind a countermodel is the same
as that behind using a truth table to demonstrate that an
argument is invalid. The point is to demonstrate that it
is possible for all the premises of an argument to be
true and still have the conclusion turn out false. Thus,
a countermodel is the predicate-logic analogue of an
invalidating assignment (introduced in chapter 2).

Comment. Given an invalid sequent with one-place
predicates and no many-place predicates, it is always
possible to find a finite countermodel. Indeed, if the
sequent contains n predicates, the universe of a
countermodel need not have more than 2" elements,
and will often have fewer.

Comment. Expansions provide a convenient way of
demonstrating that a given interpretation is a counter-
model for an argument.
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Examples.
(a)
Give a countermodel and an expansion to show this
sequent invalid:
IxGx + P — VxGx

Model:
U: {ab}
G: {a}
Pis True

Expansions:
The premise 3xGx expands to
Ga v Gb
with these truth assignments:
T v F
T

The conclusion P — VxGx expands to
P — (Ga & Gb)
with these truth assignments:
T—>(T&F)
T—> F
F

The premise is true and the conclusion is false in this
interpretation, so the argument is invalid.
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(b)
Give a countermodel and an expansion to show this
sequent invalid:

VxFx — VxGx - Fm — IxGx

Model:
U: {m,a}
F: {m]}
G {}

Expansion:

The premise (VxFx — VxGx) expands to
Fm & Fa — Gm & Ga
T FF T

The conclusion (Fm — 3IxGx) expands to
Fm — Gm v Ga
T FF FF

The conclusion is false in this interpretation and the
premise is true; hence, this interpretation is a counter-
example for the given sequent.

Construct countermodels and expansions to show the
following sequents invalid.

VxFx — Vx Gx F Vx(Fx — Gx)
JxFx — dxGx F Vx(Fx — Gx)
JxFx & 3xGx F Ix(Fx & Gx)
Ix(Fx v Gx) F VxFx v VxGx
Ix(Fx — Gx) F dxFx — JIxGx



102 Chapter 4
vi* Jx(Fx — Gx) F VxFx — VxGx

vii# VxFx < VxGx F Vx(Fx < Gx)

viii* dxFx < IxGx F Vx(Fx <> Gx)

ix* VxFx < PF Vx(Fx & P)

X* dxFx <> PF Vx(Fx & P)

Xi* dx(Fx &> P) - 3xFx <& P

xii* dx(Fx &> P) - VxFx < P

xiii* Vx(Fx — Gx), Vx(Gx — Hx) - Vx(Hx — Fx)

xiv¥* Vx(Fx — ~Hx), Vx(Hx — ~Gx) F dx(Fx & Gx)
Xv* dxFx & VxGx, ~Vx(Fx — Hx) F dxHx — 3x~Gx
Xvi* Vx(Gx v ~Hx), 3x(Gx & Fx) - dx~Hx

xvii* Vx(Fx & Gx — Hx), 3x(Fx & Hx) I IxGx

Xviii* JxFx, 3xGx, 3xHx + Vx(Fx v Gx — Hx)

Xix* ~VxFx F Vx~Fx

XX * Ix(Fx — dyGy) | IxFx — dyGy

4.3 Finite Countermodels for Arguments with Many-

ordered pair

Place Predicates without Identity

The notation {o,) denotes the ORDERED PAIR
consisting of two objects named by o and 3 (o and 3
may be the same). So long as the two objects are
different objects, the ordered pair denoted by (o, B) is
different from the pair denoted by (B, o).

Comment. The idea behind ordered pairs is easily
extended to cover orderings of more than two objects.
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An ORDERED »-TUPLE, (o, o, ..., Ocn>, consists

of the n objects named by o, o, ..., O .
Comment. As with ordered pairs, changing the order-
ing of o, @, ..., o usually changes the identity of the
n-tuple.

Definition. The EXTENSION OF AN n-PLACE
PREDICATE is a set of ordered n-tuples of objects
from the unverse.

Example.

Given a universe containing the objects a, b, and ¢, and
a two-place predicate R, the set {{a,b), {c,b), {(a,a)}
gives a possible extension for R. In this example, the
sentences Rab, Rcb, and Raa are true, while the
sentences Rac, Rbc, Rba, Rca, Rbb, and Rcc are all
false.

Definition. A finite interpretation for a set of sentences
containing one-place and many-place predicates con-
sists of the following:

¢ A finite universe, or domain.

* Extensions for all the predicates appearing in the
sentences.
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*  Truth value specifications for the sentence letters
appearing in the sentences.

Example.
Given a universe
U: {a, b}
the expansion of the wif
Vx3yFxy
is constructed by first expanding the universal
quantifier (since it has wider scope) to yield
JyFay & dyFby.
Each existential is then expanded to yield
(Faa v Fab) & (Fba v Fbb).

Comment. The definition of an interpretation for a set of sentences
containing one-place predicates, given in section 4.1, is just a

special case of the definition for many-place predicates.

countermodels Comment. As before, a countermodel for a given
sequent is a model for the premises where the
conclusion is false.

Example.

The sequent
Vx3dyRxy F JyVxRxy

is invalid, as shown by the following interpretation:
U: {a, b}
R: {(a, b). (b, &)}

Expansions:
Premise (Raa v Rab) & (Rba v Rbb)
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T & T
T

Conclusion (Raa & Rab) v (Rba & Rbb)
F & T T & F
F \ F

Construct countermodels for the following invalid
sequents.

IxFxx  VxyFyx

VydxFxy b IxFxx

VxdyFxy - dxVyFxy

Vxdy~Fxy, VxVy(Gxy — ~Fxy) F VxJdy~Gxy

Vx(Fx — JdyGxy) F VxVy(Fx v ~Gxy)

Vx3yVzVxyz - JyVxVzVxyz

Vx~VyTxy F Vx~3yTxy

Ixyz((Fxy &Fyz) &~(FxzvFyx)) - VxdyFyx — Vx~Fxx

Vx3yFxy, Ix~VyGyx, IxyFxy <> Ixy(Gyx & ~Gxy)
F Jy(Gxy v Gyx)

IxdyFxy <> ~IxGxx, Vy3dxGyx - Vx~Fxx
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Exercise 4.3.2 Establish whether each of the following sequents is

il
il

v

vi
vii
viii
ix

X1

X1i
xiil
Xiv
XV
XVvi
xvil

Xviil

X1X
XX

valid or invalid with either a proof or a countermodel.

Vx(Fx = ~Gx), 3x(Gx & ~Fx) F ~3xFx v Vx~Gx
Vx(Fx = ~Gx), 3x(Gx & Fx) - ~3IxFx v Vx~Gx
dIx(Fx — Gx) — Ix(Fx & ~Hx)
F 3Ix(Fx & Gx) — ~Vx(Gx — Hx)
Jx(Fx — Gx) — Jx(Fx & ~Hx)
F Ix(Fx & Gx) — Vx(Gx — Hx)
dx(Fx v P), P & ~3xGx, ~Ix(Fx & Gx),
Vx(Hx —» ~Fx & ~Gx) F P v Vx(Hx — P)
Vx(Fx & Gx — Hx), 3xFx I 3x(Gx — Hx)
Vx(Fx & ~Gx — Hx), 3xFx F Ix(Hx — ~Gx)
F VxFx v 3x~Gx — ~3Ix(Fx v Gx)
F VxFx v 3xGx — Ix(Fx v Gx)
dIx(Fx v Gx), 3xFx — VxHx, 3xGx — ~dxHx
F ~(dxHx & dx~Hx)
dIx(Fx v Gx), 3xFx — VxHx, 3xGx — ~dxHx
F ~(VxHx v Vx~Hx)
F ~3x(Bx & Vy(Sxy <> ~Syy))
F Vxy(Fxy — Fyx) < Vxy(Fxy < Fyx)
F Vxy(Fxy — Fxy) < Vxy(Fxy < Fyx)
Vxyz(Rxy&Rxz — ~Ryz) - ~VxRxx
Vxyz(Rxy&Ryz — ~Rxz) - Vx~Rxx
Vxyz(Fxy&Fyz — Fxz), Vxy(Fxy — Fyx)
F VxdyFxy — VxFxx
Vxyz(Fxy&Fyz — Fxz), Vx3dy(Fxy — Fyx)
F VxdyFxy — VxFxx
IxVy~Fxy = dxVyz(Fxz — Fzy)
IxVyFxy F Ix~Vyz(Fxz — Fzy)
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4.4

name
extension

Finite Countermodels with Identity

Definition. A NAME EXTENSION consists of a
single object selected from the universe.

Comment. The introduction of identity statements
requires greater care about the different roles played
by names in the language of predicate logic (which we
refer to as the object language) and in the language we
use to specify interpretations (referred to as the
metalanguage). Things may have more than one name
in the object language but each must have a unique
metalinguistic name in the specification of an inter-
pretation. To mark this distinction, in this section we
shall use italicized letters as names in the meta-
language. To reduce the potential for confusion when
specifying an interpretation for a set of sentences we
also recommend the practice of not using italicized
versions of letters already appearing in the sentences.

Comment. Italicized (metalinguistic) names are not
part of the language we are studying. Rather, they are
our names for the things denoted by names in the
object language. It is important to bear in mind that
although a thing may be named by various names in
the object language, each thing has only one meta-
linguistic name. This will aid in the specification of
interpretations for wffs containing the identity symbol.



108

finite
interpretation

identity truth
valuations

Chapter 4

Definition. A finite interpretation for a set of sentences

containing one-place and many-place predicates as

well as the identity symbol consists of the following:

¢ A finite universe, or domain.

* Extensions for all the predicates appearing in the
sentences.

¢ Extensions for the names appearing in the
sentences.

¢ Truth value specifications for the sentence letters
appearing in the sentences.

Identity statements of the form o= are true if and on-
ly if the extension of o is the extension of [3.

Comment. Because an object never has more than one
metalinguistic name, identity statements occurring in
expansions are true if and only if they are of the form
o=

Example.
The expansion of a sentence containing the identity
symbol can only proceed given both the universe and
the name extensions. Given the universe

U: {c, d}
and name extensions

ac

b: ¢
the expansion of the wft

Vx(Fxa — x#b)
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requires first the replacement of the object language
names with their metalanguage equivalents, yielding:
Vx(Fxc — x#c).
Then expansion proceeds by the normal method, to
yield:
(Fce — c#c) & (Fdc — d#c).
Finally, given the predicate extension
F: {{c, d).{d. &)}
the conjunction can be seen to be true given the falsity
of the antecedent of the left conditional and the truth of
both antecedent and consequent on the right.

Construct countermodels for the following sequents.
a=b, c=d I a=c
Fa, a#zb - ~Fb
Vxdy x=y F dyVx y=x
dx(x#a — Fx), a=b - Fb
Ixy((Fx & Fy) & x #y) - VxFx
Vxy(Fx & Gy — x=y) F ~3Ix(Fx & Gx)
dx(x#a — Fx v Gx) F3Ix(Fx v Gx — x#a)
Vxy(Fxy — y=x) - IxFxx
IxVy(Fxy < x#y) - Vxyz((Fxy & Fxz) — y=z)
Vxy((Fx & Fy) & xzy)
F Vxy(((Fx & Fy) & Fz) & ((xzy & y#z) & x#7))
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4.5

infinite
countermodel

Infinite Countermodels

Comment. Sometimes an invalid argument cannot be
shown invalid by means of a finite countermodel. Such
cases require an INFINITE COUNTERMODEL, i.c.,
one with an infinite number of objects in its domain.

Comment. A formal treatment of infinite sets requires
an advanced course in set theory. Nonetheless it is
possible to exploit knowledge about sets of numbers to
construct counterexamples for invalid arguments that
require infinite models. The wifs of predicate logic can
be given interpretations in terms of arithmetical
relationships in infinite domains such as the natural
numbers or the set of positive and negative integers.

For ease of exposition we will take the natural
numbers (0,1,2,3, etc.) as the infinite domain to be
used. (This set is denoted N.) Note also that we cannot
use expansions to construct countermodels, since an
expansion for an infinite number of objects would
involve infinitely long sentences.
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Definition. ANUMERICAL COUNTERMODEL to
an argument is a countermodel whose universe is N.

Example.
Vxyz(Rxy & Ryz — Rxz), Vxy(Rxy — ~Ryx),
Vx~Rxx, VxdyRxy - JyVxRxy

Model:
U: N
R: {{m,n) such that m<n}
(also written {{m,n) : m<n})
That is, Rxy means that x is strictly less than y.

The four premises are true, since (i) if x is less than y
and y is less than z then x is less than z, (ii) if x is less
than y then y is not less than x, (iii) no number is less
than itself, and (iv) for any number there is a greater.
The conclusion is false, however, since it says that
there is a number greater than any number. That is, no
number y is such that for every number x, (x.,y)
belongs to R.

It can be shown that only an infinite model can make
all four premises true. A given single object bears R to
something (fourth premise), but it doesn’t bear R to
itself (third premise), so a second object must be
present. This second object bears R to something
(fourth premise), but it doesn’t bear R to the first
object (second premise) and it doesn’t bear R to itself
(third premise). Hence, a third object must be present.
This third object doesn’t bear R to itself (third
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v*
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premise), and it doesn’t bear R to the second object
(second premise), and since the first object bears R to
this third object as well as the second (first premise),
the third doesn’t bear R to the first (second premise).
But this third object bears R to something (fourth
premise), hence a fourth object must be present, and so
forth. Thus, the four premises require an infinite
universe.

Return to any invalid sequent of this chapter, and give
a numerical countermodel for it. (Of course, up to this
point infinite models were not necessary for demon-
strating invalidity, but they are possible.)

Give numerical countermodels to the following
sequents.

Vxyz(Fxy & Fyz — Fxz), VxdyFxy - dxFxx
Vx3yVz(Fxy & (Fyz — Fxz)) - IxFxx
Vx3yFxy, Vxyz(Fxy & Fyz — Fxz), Vx~Fxx
F Vxy(Gx & ~Gy — Fxy v Fyx)
Vx3yz(Fxy & Fzx), Vxyz(Fxy & Fyz — Fxz)
F Ixy(Fxy & Fyx)
Vx~Fxx, VxdyVz(Fxy & (Fyz — Fxz))
F Vxyz(Fxy & Fyz — Fxz)
Vxyz(Gxy & Gyz — Gxz), Vxy(Gxy — ~Gyx),
Vx3dyGyx, Vx(x#a — Gxa) - JyVx(xzy — Gyx)
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Note: In almost all cases the answers given are not the only correct answers possible.

Chapter 1

Exercise 1.1

i False
i False
iii False
iv True
v False
vi True
vii False
viii True
X True
X False

Exercise 1.2.1

i Atomic Sentence

il Not wif

iii Not wif

v Conditional: Antecedent A; Consequent B

v Not wif

vi Conditional: Antecedent A; Consequent (B — C)

vii Conditional: Antecedent (P & Q); Consequent R

viii Disjunction: Left disjunct (A & B); Right disjunct (C — (D < G))
ix Negation

X Not wif; requires outer parentheses to be a disjunction

xi Not wif

xii Not wif

xiii Conjunction: Left conjunct ~(P & P); Right conjunct (P <= (Q v ~Q))
Xiv Biconditional: Left side ~((B v P) & C); Right side (D v ~G) — H)

XV Not wif
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Exercise 1.2.2

v A—>B

Vi A->B->0

vii P&Q—-R

viii (A&B)v(C—= (D« G)

Xiii ~P&P)V(PQv-~Q)

Xiv ~(BVP)&C)Dv~G—>H

Exercise 1.2.3

i Unambiguous: (P & (~Q v R))

ii Unambiguous: (P v Q) = (R & S))

il Unambiguous: (Pv Q) > R) < S)

v Ambiguous

v Ambiguous

vi Ambiguous

vii Unambiguous: (P & Q) <> (~R v 8))

viii Ambiguous

ix Unambiguous: (P - (Q & ~R)) <> (~S v T) —» U))
X Ambiguous

Exercise 1.3

P& ~Q

~P— ~T

P->T

T—P

~P v T(or ~T — ~P)
(T->P)—-~U
(Q&~S)—>R
~PVvR)—~T

~T v (PvR) (or the same as 8)
P&R)—>T
T&~FPVvR)
R—=>(Q—-P)
T—->U
~T—=~PvR)

R = e Y R

—_— = a e
LRSI S R
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15 Q->R&P—-Q—-(FP—->R)

16 (PVR) & ~(P&R) > Q

17 P&QYP&~R—->(-T&(S &U))

18 Te S

19 ~U>PvQor(~U—-+-Q—~P)

20 (P->Q) —P)—>P

21 P&Q—R

22 ~Q&S

23 (~Q—>~R)v~Por (P - (~Q— ~R))

24 (T & ~P) > ~R

25 (T&P)—>(R&~Q)

Exercise 1.4.1

ii. Pv Q,~Q v R, ~P [the sentence at line 3]

1 (1) PvQ A

2 2) ~QVvR A

3 3) ~P A

1,3 @ Q I,3VE
123 (5 R 24 VE
or

1,2,3 5) ~QVvR)&Q 2,4 &1
or

1,2,3 5) Q& (~QVvR) 2,4 &1
ii. P>Q,PvQFQ

1 (1 P—>Q A

2 2) PvQ A

3 3) ~Q A

23 4) P 23 VE
1,2,3 (5) Q 1.4 >E
1,2 (6) Q 35RAA(3)
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iv ~P&Q,~QVvRE~P SR
1 (1 ~P<Q

2 2) ~P

3 @) ~QVvR

1 ) ~P>Q

1,2 &) Q

123 (6) R

1,3 (7 ~P >R

Exercise 1.4.2

S1 Pv~R,~R > S,~PFS
1 () Pv~R
2 2 ~R—>S
3) ~P

, 4 ~R
1,23 (%) S
S3 P>~Q,~QvR—>~S,P&TH-S
1 D P—~Q
2 ) ~QvR—>-~S
3 3) P&T
3 4 P
1,3 &) ~Q
1,3 (6) ~QVvR
1,2,3 D ~S
84 P&(Q&R),P&R > ~S,SVTFT
1 (D P& (Q&R)
2 2) P&R —> -8
3 3) SvT
1 EN P
1 3 Q&R
1 (6) R
1 ) P&R
1,2 (8) ~S

1,23 C)) T

Answers to Chapter 1 Exercises

A
A

A

1 <E
24 ->E
3,5vE
6 -I(2)

1,3VE
2,4 —E

3 &E
1,3 ->E
5v1
2,6—E

1 &E
I &E
5 &E
4,6 &I
2,7-E
3,8 VE



Answers to Chapter 1 Exercises

S7 ~P,Rv~PPVvQFQ
1 (1) ~P

2 ) Rv-~PoPvQ
1 A3) Rv~P

2 @) Rv-~PoPvQ
12 ) PvQ

1,2 (6) Q

S9 ~P5Q&R,~PvS—>-~T,U&~PFH(U&R) &~T
1 D ~P—- Q&R
2 2) ~PvS—>~T
3 3) U & ~P

3 @) ~P

1,3 5) Q&R

13 (6) R

3 @) U

1,3 (8) U&R

3 “ ~PvS

23 (10) ~T

123 (D (U&R) & ~T

Exercise 1.5.1

S1t P 4~ ~~P

(a) Pk ~P

1 (1 P

2 ) ~P
1 A3) ~~P
(b) ~~PFP

1 (1 ~~P
2 2) ~P
1 3) P

117

vl

2 <E
34 —>E
1,5VE

A

A

A

3 &E
1,4 -E
5 &E

3 &E
6,7 &1
4 vl
29 -E
8,10 &1

A
A
1L2RAA (2)

A
A
1,2RAA (2)
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S12

1,3

1,2

S14

1,3

1,2

S16

1,3
1,2,3
1,2

S17

P—Q,~QF~P
M P—Q
2 ~Q

3) P

“) Q

) ~P
~P—Q,~QFP
M ~P—Q
2 ~Q

3) ~P

“) Q

) P

P>Q.QoRFPSR

(D P—-Q
2 Q—R
3) p

) Q

(5) R

(6) PR
PFQ—oP

M p

(2) Q

(3) Q—-P
~PFP—>Q

(1 ~P

(2) P

(3) ~Q

4) Q

(5) P—Q

Answers to Chapter 1 Exercises

A
A
A

1,3 -5E
2,4RAA (3)

A
A
A

1,3 -5E
2,4RAA (3)

A

A
A

1,3 -5E
2.4 ->E
5-1(3)

A
A

112

A

A

A

12 RAA (3)
4512



Answers to Chapter 1 Exercises

S21

(@)
1
2

1,2

S26

[ N N R N

6

2,6

2,5
1,2,5
1,2,35
1,2,3,5
1,234
1,234
1,2,3

~PvQ-d-P—>Q
~PvQFP—>Q

1) ~PvQ

2) P

3) Q

) P—Q

P>QF-~PvQ

M P—Q
) ~(~Pv Q)
3) ~P

1G] ~PvQ
&) P

(6) Q

(M ~PvQ
®) ~PvQ

PvQ,P>R Q—-SFHRVS

() PvQ
) PSR
3) Q-—S
4 ~(RvS)
(5 ~R

(6) P

(7N R

(8) ~P

9 Q

(10) S

(1)  RvS
(12) R

(13)  RvS
(149 RvS

119

A
A

1,2 vE
351(2)

A

A
A

3vI
2,4RAA (3)
[,5->E
6vI
2,7RAA (2)

A

A

A

A [for RAA]
A [for RAA]
A [for RAA]
2,6 >E

5,7 RAA (6)
1,8 VE

3,9 ->E

10 vI

4,11 RAA (5)
12vI

4,13 RAA (4)
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S28

—_
o
1

E N L) B NS R (S

S32

(SR
p—g

— =00 00 =D N W
w

(b)

~PvQ) d-~P&-~Q

~PvQ+~P&~Q

M
@3]
3)
“)
&)
(6)
(N
®)

~(Pv Q)
P

PvQ
~p

Q

PvQ
~Q
~P & ~Q

~P&~QF~PVvQ)

8]
)
3)
1G]
®)
(6)

~P & ~Q
~P

~Q
PvQ

Q
~PvQ

~P>Q) P& ~Q
~P->QFP&~Q

M
2
3)
“
&)
(6)
)
®)
&)
(10)
an

~P—-Q)
~P

P

~Q

Q
P—>Q
P

Q
P—>Q
~Q
P& ~Q

P&~QF~P—->Q)

D
@3]
3)

P& ~Q
P—-Q
P

Answers to Chapter 1 Exercises

A

A [for RAA]
2 vl
1,3RAA (2)
A [for RAA]
5vI

1,6 RAA (5)
47 &1

A

I &E

1 &E

A

2.4 VvE
35RAA(4)

>

23 RAA (4)
551(3)

L6 RAA (2)
A

85I (3)
1L9RAA (8)
7.10 &1

A

A [for RAA]
I &E



Answers to Chapter 1 Exercises

1,2 “ Q
1 ) ~Q
1 (6) ~(P—=0Q

S37 PvQ--QvP

(a) PvQFQvVP

1 1 PvQ

2 2 ~(QvP)
3 3) ~P

1.3 C)) Q

1,3 (5) QvP
1,2 ©) P

1,2 (7N QvP

1 (8) QvP
(b) QvPFPVQ

1 ¢ QvP

2 2 ~PvQ
3 3 ~P

1.3 C)) Q

1.3 5) PvQ
1,2 6) P

1,2 @ PvQ

1 8 PvQ

S38 PoQ-A-QeP

(a) PoQFHQeP
1 (H P Q
1 (2) P—Q
1 3) Q—P
1 (G QeP
(b) Qe PHPoQ
1 (H QP

1 ) QP

121

2,3 >E
1 &E

45RAA (2)

A

A
A

1,3 VvE

4 vl
2,5RAA(3)
6 vI
2,7RAA (2)

A

A
A

1,3VE

4 vI
2,5RAA (3)
6 vI
2,7RAA (2)

1 <FE
I ©FE
2,31

I ©FE
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S40
a)

~~

— = = e e e

~

b)

— = e e = e

S41
(@)

1,3

1,3.5
1,35
1,2,5
1,2,5
1,2,5
1,2
1,2
1,2

Answers to Chapter 1 Exercises

(3) P—Q 1 <E
4) P<Q 2.3 ol

P&(Q&R)4H P& Q) &R
P&Q&R)FP&Q &R

(1 P& (Q&R) A

(2) P I &E
(3) Q&R | &E
C) Q 3 &E
(5) R 3 &E
(6) P&Q 2.4 &I
€] P&Q) &R 5,6 &1
P&Q&RFP&(Q&R)

(N P&Q &R A

2) P&Q | &E
(3) R | &E
C) P 2 &E
(5 Q 2 &E
(6) Q&R 3,5 &1
€] P& Q&R) 4,6 &1

PviQvR)dA-(Pv Q) VvR
PvQVvREPvQ VR

(D Pv(QvR) A
@) ~((PvQ)vR) A

3) ~P A

1G] QVvR 1,3VE

(5) ~Q A

(6) R 45 VvE

7 PvQ VR 6 VI

(8) P 2,7RAA (3)
9 PvQ 8 VI

(10) PvQVvR 9 vl

(11) Q 2,10 RAA (5)
(12) PvQ 11 vl

(13) PvQ)vR 12 VI

(14) PvQ VvR 2,13 RAA (2)



Answers to Chapter 1 Exercises

NO\O\O\I\)UJU)I\)»—*@
fty

—_
NS (S I o}

1,2

)

[SSRRVARY &)

PvQ VREFPV(QVR)

M
)
3)
“
®)
(6)
(N
(®)
©)]
(10)
an
12)
13)
(14

P&E&QVR)AFP&Q) Vv (P&R)

PvQVvR
~(Pv(QVR))
P
Pv(QVR)
~P

R

QvR
Pv(QVR)
~R

PvQ

Q

QVvR
Pv(QVvR)
Pv(QvVvR)

P&QVRFP&Q Vv (P&R)

8]
)
3)
1G]
®)
(6)
)
®)
©)]
10
an
(12)

P& (QvVR)
~((P&Q v FP&R)
P

QvR

Q

P&Q

(P& Q) v (P&R)
~Q

R

P&R

(P& Q) v (P&R)
(P& Q) v (P&R)

P&QVP&R FP&(@QVR)

8]
2
3)
1G]

P&Q) v (P&R)
~P

P&Q

P

123

A

A

A

3vl
24RAA (3)
A

6 vI

7 vl

2,8 RAA (6)
1,9 VE

5,10 vE

11 vl

12vI

2,13 RAA (2)

A

A [for RAA]
I &E

I &E

A [for RAA]
35&1

6 vI
2,7RAA (5)
4,8 VE

3,9 &1

10 vI

2,11 RAA (2)

A

A [for RAA]
A [for RAA]
3 &E
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2 (5)
12 (©)
12 )
1 (8)
9 )
10 (10)
3 (11)
10 (12)
1,10 (13)
L1014
L1015
1.9 (16)
1,9 (17)
1 (18)
1 (19)

Exercise 1.5.2

QvR

QvVvR
QVvR
P& (QVR)

S53 PoQ-P&Q V(P& ~Q)

(a) PoQHP&Q) V(P& ~Q)
1 (1) P& Q

1 ) P>Q

1 3) Q—P

4 4 ~(P&Q) v (~P & ~Q))
5 ®) ~P

6 (6) Q

1.6 N P

1.5 (8) ~Q

1.5 9) ~P & ~Q

1.5 (10) (P&QV(~P&~Q)
14 (11 P

1.4 (12 Q

14 (13) P&Q

1.4 (1) (P&Q) V(~P&~Q)
1 (15) P&Q v (-P&~Q)

(b) P&QV(-P&~QFP=Q

1 1N
2 2)

P&Q vV (-P&~Q)
P

Answers to Chapter 1 Exercises

2,4RAA (3)
1,5 VE

6 &E
2,7RAA (2)
A [for RAA]
A

3 &E

10,11 RAA (3)
1,12 VE

13 &E

14 vI1

9,15 RAA (10)
16 vI

917 RAA (9)
8,18 &1

I «FE

I «FE

A

A

A

3,6 -E
5,7RAA (6)
5.8 &1

9vI

4,10 RAA (5)
2,11 -E
11,12 &I

13 vl

4,14 RAA 4)



Answers to Chapter 1 Exercises

3 (3)
4 4
4 &)
3 (6)
13 )
1,3 (8)
1,2 ©)
1 (10)
11 (11
12 (12)
12 (13)
11 (14)
L1l (15
1,11 (16)
1 (17)

1 (18)

S55 ~PVvQ&R,Q->SFP>R—>YS)

~Q
P&Q
Q
~(P&Q)
~P & ~Q
~P

Q
P—Q
Q
~P & ~Q
~Q
~(~P & ~Q)
P&Q
P

Q—-P
P Q

~PvQ) &R
Q-—-S

P

R

~PvQ

Q

S

R—->S
P-R-—>S)

56 Q&R Q>PVS ~S&R)FP

1 (D
2 (2
3 (3
4 4
1 &)
13 ©)
123 (D)
123 (8
1,2 9)
S

1 (N
2 (2
3 (3)
1 1G]
1 5
1,2 ©)
7 (7N
127 (8
127 9
123 (10

Q&R
Q—->PvS
~(S & R)
Q

R

PvS

~P

N

S&R

P

125

A

A

4 &E
3,5RAA 4)
1,6 VE

7 &E

2,8 RAA (3)
9 ->I(2)

A [for —1]
A [for RAA]
12 &E

1,13 RAA (12)
1,14 VE

15 &E

16 =I(11)
10,17 <1

> > >

I &E
35VE
2,6 >E
714
8 —>I(3)

A

A

A

I &E

1 &E

2.4 ->E

A [for RAA]
6,7 VE

5,8 &1
3,9RAA (7)
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Answers to Chapter 1 Exercises

Exercise 1.5.3

1i
il
iv

vi
vii
viii
ix

Form Substitution

Trans (P/R; Q/S)

HS (P/~P; Q/Q v R; R/S)
v Comm (P/P & Q; Q/R)

Dist &/v (P/P v Q; Q/~R; R/~S)
DN (PIRRv S)

Neg— (P/P v R; Q/S)

v— (P/P; Q/IQ v R)

TC (P/~(P & Q); Q/R)
DM (PP&Q;Q/R&S)
Sim Dil (P/P; Q/R v S; RIQ & R)

Exercise 1.5.4

S66
1

2
3
1,3
1,3
1
7
1,7
1,7
1
1,2

PoQFPVQ—-SP&Q

(D P Q

(2 PvQ

3) P

4 Q

(5 P&Q

(6) P>P&Q
(7N Q

() P

9 P&Q

(10) Q-P&Q
(1) P&Q

(1) PvQ—oP&Q

PoQ-AF~PvQ)v~(~Pv-~Q)
PoQRF~PVvQ)v~(~Pv-~Q)

8] PeQ
) P—Q
3) Q-P
) PvQ
&) ~P—=Q
(6) Q

A

A [for —1]
A

1,3 BP

34 &1
5-1(3)
A

1,7 BP

7,8 &I

9 >IN
2,6,10 Sim Dil
I1-I(2)

A
I «FE
1 <E
A

4 v—
2,5 Spec Dil



Answers to Chapter 1 Exercises

4
1.4
1,4
14

S73

NN o=

~

(M
(®)
&)
(10)
an
12)

~Q—P

P

P&Q

~(~Pv~Q)

PvQ— ~(~Pv-~Q)
~PvQv~(~Pv~Q)

~PvQ)v~-~Pv~Q)FP<Q

M
)
3)
1G]
&)
(6)
(N
®)
©)]
(10)
an
12)
13)
(14)

P&EQVRVS)HF((P&Q VR)VS

8))
@3]
3)
1G]
&)
(6)
(N
®)
&)
(10)
an
12)
13)

~PvQv~-Pv-~Q)
P

PvQ

~(~Pv-~Q)

P&Q

Q

P—>Q

Q

PvQ

~(~Pv~Q)
P&Q
P

Q—>P
P Q

P&QVRVS)

P&Q

P&Q VR
(P&Q)VvR)VvS
P&Q—->((P&Q VR)VS
RvS

R

P&Q VR
R->P&Q VR

S—>S

(P&QYVR)VS
RvS—>({(P&QY VR)VS
(P&Q)VvR)VvS

127

4v—

3,7 Spec Dil
6,8 &1

9 DM

10 -1 4)
Itv—o

A
A [for —1]
2 vl

1,3VE

4 DM

5 &E

6 -I1(2)
A [for —I]
8 vl

1,9 VE

10 DM

11 &E

12 =T (8)
7,13 <1

A
A

2 vl

3vl

4 >1(2)

A

A

7 vl

8 I (7)

1d

6,9,10 Com Dil
1 —=I(6)
1,5,12 Sim Dil



128 Answers to Chapter 1 Exercises

§76 PvQ.(QoR)&(-PvS.Q&R>THTvVS

1 D PvQ A

2 (2) Q->R)&(~-PVS) A

3 3) Q&R ->T A

2 @ Q—-R 2 &E

2 (5) ~PvS 2 &E

6 (6) ~T A [for —I]
3,6 (7 ~(Q&R) 3,6 MTT
3,6 (8) Q—>~R 7 Neg—
2,3,6 ) ~Q 48 IA
1,2,3,6  (10) P 1,9 VE
1,236 (A1) S 5,10 vE
1,2,3 (12) ~T—S 11 =I(6)
1,2,3 (13) TvS 12v—>

S78 PVvQ,Po> R >~ -R&T) 5 ~PHS&T—=Q

1 (1) PvQ A

2 ) P> (R > ~S) A

3 A3) (~-ReT) > ~P A

4 @) S&T A [for 5]

5 ) P A [for RAA]
25 (6) R —~S 2,5 >E

35 ) ~~R&T) 3,5MTT

4 (8) S 4 &E

245 (9 ~R 6,8 MTT

4 (10) T 4&E

4 (11 ~R>T 10 TC

245 (12) T—o-~R 9TC

245  (13) ~RoT 11,12 &I
234 (19 ~P 7,13 RAA (5)
1,234 (15) Q 1,14 vE

123 (16) S&T—>Q 151 (4)



Answers to Chapter 1 Exercises 129
S79 Pes~Q—>~R-P&SHVIQ&T),SVT>RFQ—-P
1 (D P ~Q)—>~R A
2 2) ~P&S)VvQ&T) A
3 3) SvT—->R A
4 4 Q A [for —1]
5 %) ~P A [for RAA]
5 6) P—>-~Q 5 FA
4 ™ ~Q—>P 4 FA
4,5 (8) Pe~Q 6,7 &1
14,5 ©)] ~R 1.,§ =E
1,345 (10) ~SvT) 39MTT
1,345 (1) ~S & ~T 10 DM
1,345 (12) ~S 1 &E
1,345 (13) Pv~S 12vi
1,345 (14 ~(~P & ~~8) 13 DM
15 (15) ~P&S A
15 (16) ~P 15 &E
15 17 S 15 &E
15 (18) ~~S [7DN
15 (19) ~P & ~~§ 16,18 &I
20) ~P&S - ~P&~~S 19 I (15)
1,345 (21 ~(~P & S) 14,20 MTT
1,2,3,4,5 (22) Q&T 2,21 vE
1,2,3,4,5 (23) T 22 &E
1,345 (24) ~T 11 &E
1,2,34 (25 P 23,24 RAA (5)
1,2,3 (26) Q—-P 25 -1 (4)
S80 ~Sv(S&R),(S=R)—>PFP
1 1 ~Sv (S &R) A
2 2) S—>R)—>P A
3 3) ~S A [for —1]
3 4 S—>R 3FA
%) ~S—> (S —>R) 4 ->1(3)
6 6) S&R A
6 ™ R 6 &E
6 (8) S—R 7TC
©) S&R—>(S—>R) 8 =1 (6)



S81

l\)l—*#wl\)r—*
T~

2

1,2,4
1,2,3.4
1,234

S82

L R A

2,7
2,7
1t
1t

14
14

14
1,14
1,14

1,2,7
1,2

Answers to Chapter 1 Exercises

(10) S—=R
11 P

PVRvQ,R—-9H&Q->T),SvT->PvQ,~PFQ

() Pv(RvQ)

(2 R—->95&Q->T
3) SVvT>PvQ
4 ~P

5 RvQ

(©) R—S

(7N Q—-T

(®) SvT

9 PvQ

(10) Q

P-Q->RS>-Q->TFHRv~T>(S—>R)

(D P->Q->R
(2) S=>-Q->T
3) Rv-~T

4) R

(5) S—>R

(6) R—>(S—>R)
(7 ~T

(8) S&~Q->T
9 ~S & ~Q)
(10) ~S v ~~Q

an ~S

(12) S >R

(13) ~S—=(§—>R)
(14) ~~Q

(15) Q

(16) P—-Q

a7 R

(18) S >R

(19) ~~Q - (S —>R)
(20) S >R

(21) ~T—- (@ ->R)

1,5,9 Sim Dil
2,10 —»E

> > >

1,4 vE

2 &E

2 &E

5,6,7 Com Dil
3,8 »F

49 VvE

A

A

A [for —I]
A

4TC
5-14)
A

2 Exp/tmp
7.8 MTT
9 DM

A

1 FA

[2-I(11)
A
14 DN

I5TC

1,16 =E

17TC

18 —»I(14)
10,13,19 SimDil
20 =1(7)



Answers to Chapter 1 Exercises

1,2,3 (22) S—=R
1,2 (23) Rv~T— (S —>R)

S83 P&Q>RvSHP->R)V(Q—S)

1 (1) P&Q—RvVS

2 ) ~(P - R)

2 @) P & ~R

4 4 Q

2 (5) P

24 () P&Q

124 (7 RvS

2 ®) ~R

124 (9 S

1,2 (10) Q=S

1 (1) ~P>R) >(Q—9)
1 (12) PSR VQ-S)

S84 PoQ&R—-P),PVR)&~(Q&RFP&Q)&~R

1 (1 (P— Q)& (R—P)
2 2) (PVvR) & ~(Q&R)
1 3) P->Q

1 @) R—P

2 ) PvR

2 (©) ~(Q&R)

2 (7 ~Qv~R

2 (8) ~P >R

1 ) ~P - ~R

12 (10) ~~P

1,2 (1) P

1 (12) R-Q

1 (13) ~Q > ~R

2 (14) Q—--~R

12 (15) ~R

12 (16) Q

1,2 (17 P&Q

1,2 (18) (P &Q) & ~R

131

3,6,21 Sim Dil
22 -1 (3)

A

A [for —1]
2 Neg—
A [for —I]
3 &E

4,5 &1

1,6 -FE
3 &E

7,8 VE
9->I4)
10 =1 (2)
[tv—>

A

A

1 &E

I &E

2 &E

2 &E

6 DM
5v—

4 Trans
8.91A
10 DN
3,4 HS
12 Trans
Tv—
13,14 Spec Dil
3,11 -E
11,16 &I
15,17 &I
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S85 P&EQ->RVvSH&~R&S),R&Q—=S,

1 (D
2 2
3 3)
4 1G]
5 )
45 ©)
145 (D
145 (8
145 (9
145  (10)
11 (11
511 (12)
25,11 (13)
2.5 (14)
1,245 (15)
1245 (16
1,2,3.4,5 (17
1,2,3.4,5 (18)
5 (19)
5 (20)
1,2,3.4,5 (21)
12,345 (22)
1234  (23)
123 (24

Exercise 1.6.1

Answers to Chapter 1 Exercises

S>((R&Q)V(~R&~Q) v ~PFP—~Q

P&Q—=>RvS)&~R&S)
R&Q—-S

S— (R&Q)V(~R & ~Q)) v ~P

P

Q
P&Q

RvS)&~R&S)
RvS

~R & S)

R—-~S

R

R&Q

S

R—->S

~R

S
(R&Q vV (-R&~Q))v~P
R&Q vV (~R&~Q)
~R—>Q
~(~R & ~Q)

R&Q

R

~Q

P—-~Q

P
P—>P

~(P v ~P)
p

T1 FP—>P
1 (N
(2
T2 FPv~P
(i) primitive rules only
1 ()
2 (2

2 3)

Pv-~P

A

A

A

A [for —1]
A [for RAA]
4,5 &1

1,6 -FE

7 &E

7 &E

9 Neg—

A

5,11 &I
2,12 -E
13 >I(11)
10,14 TA
8,15 vE
3,16 -E
4,17 vE
5TC

19 Neg—
18,20 VE
21 &E
15,22 RAA (5)
22 > (4)

A
1 >I(1)

A [for RAA]
A [for RAA]
2 vl



Answers to Chapter 1 Exercises

1 @) ~P
1 ) Pv-~P
(6) Pv~P

(ii) derived rules allowed

1 (1 ~P
2) ~P — ~P
3) Pv-~P
T4 FP->(Q—-P)
(i) primitive rules only
1 (1 P
2 (2) Q
1 3) Q—>P
@ P>(Q—->P

(ii) derived rules allowed

1 1 P
1 ) QP
3) P—>(@Q—-P)
TS FP->QvQ-P
(1) primitive rules only
1 M ~((P>QvQ—-P)
2 2) P->Q
2 3) P->QvQ—->P
1 C)) ~(P—=0Q
5 %) ~P
6 (6) P
7 (N ~Q
5.6 ®) Q
5 ) P—>Q
1 (10) P
11 1 Q
1 (12) Q—-P

—_—

(13) P-QvQ—->P)
(14) P->QvQ-P

133

1,3RAA (2)
4 v1
1,5RAA (1)

A
I ->I(1)
2v—>

A [for —I]
A [for =]
1 >1(2)
3I(1)

A
1 TC
2 5I(1)

A [for RAA]
A [for RAA]
2 vl
[,3RAA(2)
A [for RAA]
A [for —I]
A [for RAA]
5,6 RAA (7)
8 =l (6)
49RAA (5)
A [for —I]
10 I (1D
12 vl

1,13 RAA (1)
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(i) derived rules allowed

1
1
1
1
1
1
1
1

T8

1
2

W

11
3,11
3,10

2,3
1,2

10

5,10
1,10

25

M
)
3)
1G]
&)
(6)
(N
®)
©)]

~(P=>QvQ-P)
~P->Q&~(Q—P)
~(P—>Q)
~(Q—P)

P& ~Q

Q&-P

P

~P
P->QvOQ-P

F~PoQo(-PoQ)
(i) primitive rules only

M
)
3)
“
&)
(6)
)
®)
&)
10
an
12)
13)
(14)
(15)
16)
an
(18)
19)
(20)
21
(22)
(23)
(24)
(25)

~(PeQ)
~P

~Q
~Q > ~P
P

~P

Q
P—>Q
~P—>-~Q
Q

~P

~Q

P

Q—>P
P<Q
Q
~P—=Q
P—>Q
Q—-P
P<Q
~P
Q—>-~P
~P&Q
~P= Q) »(-PeQ)
~P-Q

Answers to Chapter 1 Exercises

A

1 DM

2 &E

2 &E

3 Neg —
4 Neg —
5 &E

6 &E

7,8 RAA (1)

A [for —I]

A [for —1]

A

2 -1(3)

A [for —1]
3,4 -E

5,6 RAA (3)
7-1(5)
31(2)

A [for —I]

A [for RAA]
9,11 -E
10,12 RAA (11)
13 -1 (10)
8,14 <1

1,15 RAA (3)
16 ->1(2)

10 =1 (5)

5 >I(10)
18,19 <l
1,20 RAA (5)
21 =I(10)
17,22 &l

23 I (1)

A [for —1]



Answers to Chapter 1 Exercises

25 26) ~P-Q
25 Q7))  Q—o-~P
28 28) PoQ
28 29 P—Q
28 (30) QP

10,28 (31) P
10,25 (32) ~p

2528  (33) ~Q

5,28 (34) Q

25,28  (39) ~P

25,28  (36) Q

25 37 ~(P& Q)
(38) (~PoQ->~PeQ)
(39) ~PoQ e (-PeQ)

T9 F(P>Q) —->P)—>P

(1) primitive rules only

1 €] P->Q—P

2 2) ~P

3 3) P->Q

1,3 4 P

1,2 ) ~(P—>Q)

6 (6) P

7 (M ~Q

2,6 ®) Q

2 “ P—->Q

1 (10) P

(11D (P-Q —->P—>P

(it) derived rules allowed

1 (D ~(P=>Q —->P)>P)
1 2) (P>Q) »>P)&-~P
1 3) P->Q—-P
1 (G ~P
1 (5) ~P—-Q)
1 (6) P& ~Q
1 @) P
®) P->Q ->P)—>P

135

25 <E

25 <FE

A [for RAA]
28 «FB

28 «FE
10,30 -E

1027 >E
31,32 RAA (10)

5,29 -E
33,34 RAA (5)

26,35 >E
33,36 RAA (28)
37 =1 (25)
2438 &1

A [for —I]
A [for RAA]
A

1,3 -E
2,4RAA (3)
A [for —I]
A [for RAA]
2,6 RAA (7)
8 —I (6)
5,9RAA (2)
10 =I (D)

A

I Neg —
2 &E

2 &E

34MTT

5 Neg —
6 &E

4,7RAA (1)



136 Answers to Chapter 1 Exercises

T10 FP->Qv(Q->R)
(i) primitive rules only

1 (1 ~((P—=Q v(Q—->R) A [for RAA]
2 (2) P—-Q A
2 3) P->QvQ-R) 2vI
1 4) ~(P—->Q 1,3RAA (2)
5 (5) Q A [for —1]
6 ©) ~R A [for RAA]
7 (N P A
5 8 P—Q 51(7)
1, ©) R 4,8 RAA (6)
1 (10) Q—R 9 I (5)
1 (11) P->QvQ-R) 10 vI
(12) P->QvQ-R) 1,11 RAA (1)
(i) derived rules allowed
1 1) ~P—>Q) A
1 (2) P& ~Q 1 Neg —
1 3) ~Q 2 &E
1 ) Q-R 3 FA
(5) ~P->Q —->Q->R) 4 I(1)
(6) P->QvOQ-R) 5v—
(ii) alternative proof using derived rules
1 ) Q A
1 ) P—>Q 1 TC
1 (3) P->QvQ—->R) 2vI
4) Q-FP->QVvQ-—->R) 3I(D)
(5) ~Q A
(6) Q—-R 5FA
) P->Q)v(Q—-R) 6 vI
(3) ~Q->F->QVv(Q-—>R) 7 =1(5)
) P->QvQ-R) 4,8 Spec Dil



Answers to Chapter 1 Exercises

T11

1
1

1
4
5
1,5
1,4
1

9

10
1,10
1,9

1

1

16
16
16

19
20
16,20
16,19
16

24
25

16,25
16,24

16
16

FPoQ e (-Peo~Q)
(i) primitive rules only

M

@3]

3)

1G]

&)

(6)

)

®)

©)]

(10)
an
12)
13)
(14
(15)
(16)
an
(18)
19)
(20)
21
(22)
(23)
(24)
(25)
(26)
27
(28)
(29)
(30)
€)Y

P<Q
P—-Q
Q—-P
~P

~Q— ~P

~P & ~Q

PeoQ - -Pe-~Q)
~P & ~Q

~P - ~Q

~Q > ~P

P

~Q

~P

Q-P
P<Q
~Peo~-Q->PeQ
P Qe (P ~Q)

(ii) derived rules allowed

1
1
1

M
@3]
3)

P& Q
Qe P
~P & ~Q

137

A [for —I]

1 <E

1 <E

A [for —1]
A [for RAA]
3,5 >E

4,6 RAA (5)
7-14)

A [for —I]
A [for RAA]
2,10 -»E
9,11 RAA (10)
12 -1(9)
8,13 &l

14 -I (D)

A [for —I]
16 <E

16 <E

A [for —1]
A [for RAA]

18,20 -E

19,21 RAA (20)
22 —»I(19)

A [for —1]

A [for RAA]
17,25 -E
24,26 RAA (25)
27 -1 (24)
2328 <l

29 -1 (16)
15,30 &I

A
1 Comm
2 Bitrans
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T12

1

W = =

1,6
1.5
145
14,5
1.4

14
15
16
17
15,16
15
14,15
14
22
22
14,22
14
14

“
)
(6)
)
®)
©)]

Answers to Chapter 1 Exercises

PeQ) = (P ~Q)
~P & ~Q

Q&P

P<Q
~Po~Q—->Pe<Q)
PeQ e (P ~Q)

FFPQ&R-QP—-R—Q
(1) primitive rules only

8]
@3]
3)
“
)
(6)
(N
®)
)
10
an
12)
(13)
(14)
15
16)
a7
(18)
19)
(20)
@n
(22)
(23)
(24)
(25)
(26)
@27
(28)

~P>Q&R—-Q)
~P—=Q

R—->Q

P—-R

~Q

~P

OO R TLO

P->R)—>Q
~P>Q&R-Q—>((P->R)—>Q)
P—->R)—Q

~P

P

~R

R

P—-R

Q

~P—=Q

R

P—->R

Q

R—-Q

~PoQ&R—-Q
(P>R->Q—=>-P->QP&R->Q
FP->Q&R->Qe—P—->R)—Q

3-1Q2)
A

5 Bitrans
6 Comm
7 -1(5)
4,8 <1

A
1 &E
I &E

A [for —I]

A [for RAA]
A

2,6 »E

5,7 RAA (6)
4.8 ->E

3,9 ->E

5,10 RAA (5)
11 -=I@4)

12 =I (1)

A

A

A

A

15,16 RAA (17)

18 =I(16)
14,19 -E

20 =I(15)
A

22 I(16)
14,23 >E
24 -1 (22)
2125 &I
26 I (14)
1327 &I



Answers to Chapter 1 Exercises

(i) derived rules allowed

1
1
1
4
1,4
1,4
1

10
10
9,10

14
14
9,14

T13

N

(D ~Po>Q&R—-Q
2 ~P—Q

3 R—Q

4 P>R

3) P—>Q

©) Q

7 P->R)—Q

8 ~P>R&R->Q—->((P>R—Q
9 P->R)—>Q

(10) ~P

(11) PSR

(12) Q

(13) ~P>Q

(14) R

(15) P—>R

(16) Q

amn R—>Q

(13) ~PoQ&R—-Q
(19) (PR ->Q->-Po>Q&R—-Q)
20) FP->Q&R->Qe—P—->R)—Q

FPoP&P

(D P

2) P&P
?3) P>P&P
@) P&P
5 P

(6) P&P P
) PoP&P
FPoPVP

(N P

) PvP

A3) P>PVP
@) PvP

&) ~P

©6) P

139

A

I &E

1 &E

A

3,4 HS
2.5 Spec Dil
6 I (4)
751
A

A

10 FA
9,11 -E

12 -1 (10)
A

14 TC

9,15 -E
16 —E (14)
13,17 &I
18 I (9)
8,19 <1

A

1,1 &l
2 5I(1)
A
4&E

S5-I
3,6 1

A

I vl

2 >l

A

A [for RAA]
4,5 vE



140 Answers to Chapter 1 Exercises

4 (7 p 5,6 RAA (5)
(8) PvP—P 7 -1(4)
“ P&PvVvP 3,81

T17 FPoQ&R&S) > PVR&QVS)
(i) primitive rules only

1 D PoQ&RS) A

1 2) PoQ | &E

1 (3) P>Q 2 oE

1 (€Y] Q—-P 2 «E

1 (5) Re S | &E

1 (6) R—=S S «E

1 (N S>SR 5oE

8 (8) PVR A [for =I]

9 ) ~(QvS) A [for RAA]
10 (10) Q A

10 (11 QvS 10 vI

9 (12) ~Q 9,11 RAA (10)
13 (13) P A

1,13 (14) Q 3,13 SE

1,9 (15) ~P 12,14 RAA (13)
1,89  (16) R 8,15 VE

1,89 (17D S 6,16 —F

1.89  (18) QvSs 17 V1

1.8 (19) Qvs 9,18 RAA (9)
1 (20) PVR—>OQVS 19 >1(8)

21 1) Qvs A

22 (22) ~PVvR) A

23 (23) P A

23 (24) PVvR 23 vl

22 (25) ~P 2224 RAA (23)
26 (26) Q A

1,26 27 P 4,26 —E

1,22 (28) ~Q 2527 RAA (26)
1,21,22 (29) S 21,28 VE
1,21,22  (30) R 7,29 -E
1,21,22 3D PVR 30 vI

1,21 (32) PvR 22,31 RAA (22)



Answers to Chapter 1 Exercises

1 (33)
1 (34)
(35)

QvS—>PvR
PvR&QvS
PoQ&R&S) > PVvR&QVS)

(ii) derived rules allowed

8]
2
3)
1G]
)
(6)
)
®)
&)
10
an
9 (12)
(13)
(14)
(15)

O Vo JE S G G S L G Uy
™

PeQ&RS)
P Q

RS

PvR

P—-Q

R—->S

QvS
PvR—>QvS
QvS

Q—-P

S—R

PvR
QvS—>PvR
PVR&QvVS
PeoQ&ReS)>PVReQVS)

141

32121
20,33 oI
34 T1(1)

A

1 &E

I &E

A

2 <E

3oE

4,5,6 Com Dil
714

A

2 <E

3oE

9.10,11 Com Dil
12 =1(9)
8,13 &1

14 —=I (1)

T19 FPeQ->(R->PPeoR—-Q)&((P—-R)« (Q—R))
(1) primitive rules only

1 M
1 @
1 €)
4 “4)
5 )
45 (6)
145 (7
14 ®)
1 )
10 (10)
11 (11)
10,11 (12)
1,10,11 (13)
L1014

P Q
P—Q
Q—>P
R—->P
R

P

Q
R—>Q
R->P->R->Q
R—-Q
R

Q

P
R—->P

A [for —I]
1 <E

I «FE

A [for —I]
A [for —I]
45 —>E
2,6 >E

7 -I(5)

8 >I4)
A

A

10,11 -E
3,12 -E
13 >I(1)
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1 (15)
1 (16)
17 a7
18 (18)
1,18 (19)
1,17,18  (20)
1,17 @2
1 (22)
23 (23)
24 (24)
124 (25
1,2324 (26)
123 @27
1 (28)
1 (29)
1 (30)

(31

R—->Q—>R-P
R->PR—-Q)
P—>R

Q
P

R

Q—R
P->R)—»(Q—->R)
Q—>R

P

Q

R

P—>R
Q—>R)—»(P—>R)
P—->R)y«(Q—R)

(R=2P)=R-Q)&(P->R) < (Q—=R)

Pe=Q)—

(R=>P)=>R-Q)&((P->R)<=(Q—-R)

(ii) derived rules allowed

1 ()
1 (2
1 (3
4 @)
14 )
1 (6)
7 %)
17 ()
1 ©)
1 (10)
11 (11
1,11 (12)
1 (13)
14 (14)
1,14 (15)
1 (16)

1 a7

P<Q
P—>Q
Q—>P
R—P
R—->Q
R->P>R—-Q
R—->Q
R—->P
R->Q->R-P)
R->P)eR—-Q)
P—>R
Q—>R
P->R)—»(Q—->R)
Q—R
P—R
(Q—>R)—>(P—>R)
P->R)<(Q—R)

Answers to Chapter 1 Exercises

14 =>I(10)
9,15 &1

A
A

3,18 SE
17,19 SE
20 -1 (18)
21 =1 (17)
A
A

224 SE
23,25 SE
26 -1 (24)
27 -1 (23)
2228 &I
16,29 &I
30 I (1)

A

I «FE

I «FE

A

2,4 HS
504
A

3, 7HS

8 >I(7)
6,9 &1

A

3,11 HS
12 I(1D)
A

2,14 HS
15 -1 (14)
13,16 <1



Answers to Chapter 1 Exercises

1

T21

1

AN N R ==

14,5
145
1.4

14

15

16

16

15
14,15
1,14,15
1,14,15
1,14

(18)
19)

143

(R>P)eR-QM& (PR« (Q—R) 10,17 &l

PeoQ)—

(R>P)oR-Q)&(P—-R)«<(Q—R)

FPQ >RvPoRVQ)
(i) primitive rules only

8]
@3]
3)
1G]
)
(6)
)
®)
&)
10
an
(12)
13)
(14)
(15)
(16)
a7
(13)
19)
(20)
21
(22)
(23)
(24)
(25)

P Q
P—-Q
Q—-P

RvP
~R v Q)

R

RvQ

~R

P

Q

RvQ

RvQ
RvP—>RvQ
RvQ
~RvP)

R

RvP

~R

Q

P

RvP

RvP
RvQ—->RvP
RvP&RvVQ
Po>Q—-RVPoRVQ)

(i) derived rules allowed

1

1
1
4

M
)
3)
“

P Q
P->Q
Q-—-P
RvP

18 =I(h)

1 <FE
1 <FE
A

A
A

6 vI
5,7RAA (6)
4,8 VE

2,9 -E

10 vI

5,11 RAA (5)
12->14)

A

A
A

16 vI

15,17 RAA (16)
14,18 VE

3,19 -E

20 vI

15,21 RAA (15)
22 ST (14)
13,23 <1

24 —>I (1)

I ©FE
1 <FE
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1.4
1.4

1.9
1.9

T27

1

2
3
4

24
2.3
7
1,7
12,3
10
10
3,10

1,2

17

18
19
20
18,20
18,19
23
17,23

®)
(6)
(N
®)
&)
10
an
12)
13)
(14)
(15)

~R—P
~R—->Q
RvQ
RvP—->RvQ
RvQ
~R—->Q
~R—>P
RvP
RvQ—->RvP
RvP&RvVQ
PeoQ—->RVP-RVQ)

FP-Q->QQ—-P)—P
(1) primitive rules only

8]
2)
3)
)
&)
(6)
)
®)
©)]
10)
an
12)
(13)
(14)
(15)
(16)
an
(18)
19)
(20)
2n
(22
(23)
(24)

P-0Q0-Q
Q—>P

~P

Q

P

~Q
P—>Q
Q
~P—Q)
P

PvQ
Q

P—-Q
P

Q—-P)—>P

(P=>Q->Q->(Q—->P)->P)

Q->P)>P
P—>Q
~Q

Answers to Chapter 1 Exercises

4 v—
2,5HS

6 v—>

7 ->L @)
A

9v—
3,10 HS
[tv—o
12 -1(9)
8,13 &1
14 -I (D)

A [for —1]
A [for —1]
A [for RAA]
A

24 -E
3,5RAA (4)
A

1,7 -E

6,8 RAA (7)
A

10 vI

3,11 vE

12 =1 (10)
9,13 RAA (3)
14 —>I1(2)

15 >I (1)

A [for —I]

A [for —1]

A [for RAA]
A

18,20 SE
19,21 RAA (20)
A

1723 >E



Answers to Chapter 1 Exercises

17,18,19 (25) ~(Q — P)

26 (26)
26 Q7
1926 (28)
19 (29)
17,18 (30)
17 (31)

(32)

(33)

Q

QvP

P

Q—>P

Q

P->Q-Q
(Q—=>P)=»>P)>((P-Q—->Q
P->Q—->QeQ—->P)—>P

(it) derived rules allowed

1 ()
1 2
1 3
1 1G]
1 5
1 6)
1 7
1 ®)
1 9)
1 (10)
(11
12 (12)
12 (13)
12 (14)
12 (15)
12 (16)
12 a7
12 (18)
12 (19)
12 (20)
12 1)
(22)
(23)

~(P—=Q—->Q > (Q->P)—P)
(P=2Q—->Q&~(Q—=P)—>P)
P->Q—Q

~((Q—->P)—P)

Q->P&~P

Q—>P

~P

P—>Q

Q

P
(P->Q—->Q—=>((Q—-P)—P)
~(Q—=P)=>P) > (P->Q —Q))
(Q=>P)->P&~(P>Q—Q)
Q->P)—>P

~((P->Q)—Q

P—->Q&~Q

P—>Q

~Q

Q-—-P

P

Q
(Q—=>P)»>P)>((P-Q->Q
P->Q—-Qe@Q—-P)>P

145

22,24 RAA (23)

A

26 VI
1927 VE
28 —I (26)

25,29 RAA (19)

30 -1 (18)
31 I (17)
16,32 I

A

I Neg —»
2 &E

2 &E

4 Neg —»
5 &E

5 &E
7FA

38 =E
6.9 -E
7,10 RAA (1)
A

12 Neg —
13 &E

13 &E

15 Neg —

16 &E
16 &E

I8 FA
14,19 =E
17,20 -»E

18,21 RAA (12)

11,22 &1
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T30

1

[ RNV, IRV ]

IS

1,4
14
1.4
1,2
1,2

1.4
1,3
1,3

20

21
22

22

1,22
1,22
1,22
1,22
1,20
1,20

1,22
1,21
1,21

Answers to Chapter 1 Exercises

FP&QYVRE&ES)«((PVRI&PVS))&(QVR)&(QVS))
(i) primitive rules only

M

@3]

3)

€]

®)

(6)

)

®)

&)

(10)
an
12)
13)
(14)
(15)
(16)
an
(18)
19)
(20)
21
(22)
(23)
(24)
(25)
(26)
27
(28)
(29)
(30)
€)Y
(32)
(33)
(34
(35)
(36)

P&QVRES)

~(P v R)
~(PvS)
~P
P&Q
P
~(P & Q)
R&S
R

S

PvR
P

PvR
PvR
PvS

P

PvS
PvS
PVvR&PVS)
~(QVvR)
~(QvS)
~Q

Q
~(P & Q)
R &S
R

S

QvR
Q

QvR
QVR
QvS
Q

QvsS
QvS

QVR)&QVS)

A [for —I]

A [for RAA]

A [for RAA]

A

A

5 &E

4,6 RAA (5)

1,7 VE

8 &E

8 &E

9vI

2,11 RAA (4)
12vI

2,13 RAA (2)
10 vI
3,15RAA (4)
16 vI

3,17 RAA (3)
14,18 &I

A [for RAA]

A [for RAA]

A

5 &E

2223 RAA (5)
1,24 vE

25 &E

25 &E

26 vI

20,28 RAA (22)
28 vI

20,30 RAA 20)
27 vI

21,32 RAA (22)
33 vI

21,34 RAA 21)
30,35 &I



Answers to Chapter 1 Exercises

1 (37)
(38)
39 (39)
39 (40)
39 (41)
39 42)
39 (43)
39 (44)
39 (45)
46 (406)
47 47)
48 (48)
4748  (49)
4748  (50)
4647  (51)
39,46,47 (52)

39,46,47 (53)
39,46,47 (54)

39,46,47 (55)
3946  (56)
3946  (57)
39,46 (58)
39,46  (59)
3946 (60)
39 (61)

(62)

(63)

(PVR) &P VS) &({(QVR)&(QVS))
P&Q VRE&S)—

(PVvR) &PV &W(QVR)&(QVS))
(PvR&PVS)&((QVR) &(QVS))
PVvR)&PVS)

QVvR&WQVS)

PvR

PvS

QvR

QvS

~((P&QVR&S))

P

Q
P&Q

P&Q)vR&S)
~Q

R

S

R&S
P&Q)V((R&S)
~P

R

S

R&S
P&Q)V(R&S)
P&Q)vR&S)

(PVRY&PVSH&((QVRI&(QVS) >

P&Q v (R&S)
P&QVR&S) &
(PVR) & (PVvS) &(QVR)&(QVS))

(ii) derived rules allowed

1
1
1
1
1
1

8]
)
3)
4
&)
(6)

P&Q v R&S)
(P&QYQ VR &(P&QVS)
(P&Q)VR

P&Q)VvS
(PVR)& (Q VR)
PvS)&@QvS)

147

19,36 &I
37 =I()

A [for —I1]

39 &E

39 &E

40 &E

40 &E

41 &E

41 &E

A [for RAA]

A

A

4748 &I

49 vI

46,50 RAA (48)
44,51 vE

45,51 vE

52,53 &I

54 vI1

46,55 RAA (47)
42,56 VE

43,56 vE

57,58 &I

59 vl

46,60 RAA (46)
61 -1(39)

38,62 <1

[ Dist
2 &E
2 &E
3 Dist
4 Dist
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Y Sy

15
15
15
15
15
15
15
15
15
15
15
15
15

T31

(M
®)
&)
10)
an
12)
13)
(14)

(15)
16)
an
(18)
19)
(20)
21
(22)
(23)
(24)
(25)
(26)
27)
(28)

(29)

Answers to Chapter 1 Exercises

PvR

PvS

PVvR&PVS)

QVR

QvS

QVvR&QVS)

(PVR)& (P VvSE) & (QVR&QVS))
P&QVRE&S) —

(PvR)& (P VvS) &(QVR)&(QVS))
(PVvR) &P VS) &(QVR)&(QVS))
PVvRY&PVS)

QVvR&QVS)

PvR

PvS

QVR

QvS

PvR)&(QVR)

PvS)&QvVS)

P&Q VR

P&Q) VS
(P&Q VR &(P&Q VS)
P&QVRES)

(PVRY&PVSH&((QVRI&(QVS) >

P&Q VR &S)
P&EQVR&S)«
(PVR)&(PVvS)&((QVR)&(QVS))

5&E
6 &E
7.8 &l
5 &E
6 &E
10,11 &I
9,12 &I
13 >1(1)

A

15 &E
15 &E
16 &E
16 &E
17 &E
17 &E
18,20 &1
19,21 &I
22 Dist
23 Dist
24,25 &1
26 Dist
27 —=I(15)

14,28 <1

FPVvQ&RVS) & ((P&R)V(P&S) vIQ&R)V(Q&S))

(1) primitive rules only

SR W W LN —

@
@3]
3)
1G]
o)
(6)
)

PvQ) & RVS)

~(P&R)v(P&S)V({(Q&R)V(Q&S))

P&R

P&R)v (P&S)

(PER) VP &S) v(Q&R)V(Q&S))
~(P&R)

P&S

A [for —I]
A [for RAA]
A

3vI

4 vl
2,5RAA (3)
A



Answers to Chapter 1 Exercises

11
11
11

15
15
15

21

22
21,22
2,21
1,2,21
1,2,21
1,2
1,2
1,2,22
1,2
1,2
1,2

35
36

37
38
38

38
36
36,37
36,37
36,37
36

@®)

©)]

10
an
12)
13)
(14)
(15)
(16)
an
(13)
19)
(20)
21
(22)
(23)
(24)
(25)
(26)
27
(28)
(29)
(30)
(3D
(32
(33)
(34)

(35)
(36)
(37
(38)
(39)
(40)
(41
(42)
(43)
(44)
(45)

P&R)V(P&S)

(P&R)VP&S) v((Q&R)V(Q&S)
~(P&S)

Q&R

Q&R)v(Q&S)

(P&R)V(P&S) v(Q&R)V(Q&S)
~(Q&R)

Q&S

Q&R)v(Q&S)

(P&R) VP &S) v((Q&R)V(Q&S)
~Q&S)

PvQ

RvS

Q&R

~R

S

Q&S

(P&R)v(P&S) v((Q&R)V(Q&S))
PvQ &RVS)—>
(P&R)vP&S) Vv IQ&R)V(Q&S))
(P&R)v(P&S) v((Q&R)V(Q&S))
~PvQ

P&R)V(P&S)

P&R

P

PvQ

~P & R)

P&S

P

PvQ

~((P&R)V (P &S))
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%!

8 vl

29RAA (7)
A

1t vI

12vI

2,13 RAA (1D
A

15 vI

16 vI

2,17 RAA (15)
I &E

I &E

A

A

21,22 &1

6,23 RAA (22)
20,24 vE
21,25 &I
10,26 RAA (21)
19,27 VvVE
22,28 &I
14,29 RAA (22)
20,30 vE
28,31 &I

18,32 RAA (2)
33 >I(D)

A for —I
A [for RAA]

A
A
38 &E

39 vI

36,40 RAA (38)
3741 vE

42 &E

43 vI

36,44 RAA (37)
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35,36
47
47
47
36
35,36
35,36
35,36
35
55

56
57
57

57
55

55,56
55,56
55,56
55
35,55
66
66
66
55
35,55
35,55
35,55
35
35

(46)
47
(48)
(49)
(50)
(51
(52)
(53)
(54
(55)
(56)
(57)
(58)
(59)
(60
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
7n
(72)
(73)
74
(75)

(76)

(Q&R)v(Q&YS))

Q&R
Q

PvQ
~(Q&R)
Q&S
Q

PvQ
PvQ
~R v S)

Q&R V(Q&S)

Q&R
R

RvS
~(Q&R)
Q&S
S

RvS

~(Q&R)v(Q&S))

P&R)V(P&S)
P&R

R

RvS

~(P & R)

P&S

S

RvS

RvS

PvQ &RVYS)

(P&ER)VIP&S) VIQ&R)V(Q&S)) =

PvQ&RVYS)

PvQ&RVS) &
(PE&R) VP &S) VQ&R)VQ&S)

(ii) derived rules allowed

1
1
3

M
)
3)

PvQ&RVYS)

P&RVS)VQ&RVS))

P& R VS)

Answers to Chapter 1 Exercises

35,45 vE

A

47 &E

48 vI

36,49 RAA (47)
46,50 vE

51 &E

52 VI

36,53 RAA (36)
A [for RAA]

A

A

57 &E

58 vI

55,58 RAA (57)
56,60 VE

61 &E

62 vI

55,63 RAA (56)
35,64 VE

A

66 &E

67 vI

55,68 RAA (66)
65,69 VE

70 &E

71 vI

55,72 RAA (55)
54,73 &I

74 -1 (35)

34,75 <1

I Dist



Answers to Chapter 1 Exercises

3

11
12

12
12

12
12
12

19

19
19

19
19
19

11

T32

“
)
(6)
)
®)
©)]
10)

an
12)
(13)
(14)
(15)
(16)
an
(18)
19)
(20)
2n
(22)
(23)
(24)
(25)
(20)
27

(28)

P&R)V(P&S)
P&RVvS) > P&R)Vv((P&S)

Q&R VS)

Q&R)V(Q&S)
Q&RVS) > (Q&R)VQ&S)
(P&R)VP&S) v(Q&R)V(Q&S))
PvQ)&RVS) >

(P&R)V{P&S) v((Q&R)V(Q&S))
(P&R)V{P&S) v((Q&R)V(Q&S))
P&R)V(P&S)

P& RvVYS)

P

RvS

PvQ

PvQ&RVS)

P&R) VP &S > PVvQ &RVS)
Q&R)V(Q&S)

Q&R VS)

Q

RvS

PvQ

PvQ &RVS)
QQ&R)VIQ&S) > PVvQ &R VS)
PvQ &(RVS)

(P&ER) VP &S)VQ&R)V(Q&S))—

PvQ & RVS)
PvQ) &[RVS) o
(P&ER)VP&S) V(Q&R)V(Q&S))

151

3 Dist

4 ->I3)

A

6 Dist

7 -1 (6)
2,5,8 Com Dil
9 >I (1)

A

A

12 Dist

13 &E

13 &E

14 vl
15,16 &I
17 =I1(12)
A

19 Dist

20 &E

20 &E

21 vl
22,23 &1
24 >I(19)
11,18,25 SimDil
26 —>I(11)

10,27 <1

FP-Q&R-S) < (~-P&~R)V(~P&S)) v((Q&~R) v (Q&YS))

(1) primitive rules only

1

N = = N

M
)
3)
“
)

P->Q&R—-YS)

A [for —I]

~((~P & ~R) V(~P & $)) vV((Q & ~R) V(Q & S))) A [for RAA]

P—->Q
R—S
~P&~R)V(~P &S)

1 &E
1 &E
A



2324
2,23
1,2,23
1,2,23
1,2
1,2
1,2,24
1,2
1,2
1,2

37

38
39
40
40
39
43

(6)

)

®)

)

(10)
an
12)
(13)
(14)
(15)
(16)
an
(18)
19)
(20)
21
(22)
(23)
24
(25)
(26)
27)
(28)
(29)
(30)
3D
(32)
(33)
(34)
(35)
(36)

(37
(38)
(39)
(40)
(41)
(42)
(43)

Answers to Chapter 1 Exercises

(~P&~R)v(~-P&S) v(Q&~R)v(Q&S)) 5VvI

~((~P & ~R) v (~P & S)) 2,6 RAA (5)
Q&~-R)v(Q&S) A
(~P&~R)VP&SH V(Q&~R)v(Q&S)) 8VI
~((Q&~R)v(Q&S) 2,9 RAA (8)
(~P & ~R) A

~P& ~R) v (~P & S) 11 vI

~(~P & ~R) 7,12 RAA (1D
~P&S A

(~P&~R) Vv (~P & S) 14 VI

~(~P & S) 7,15 RAA (14)
Q& ~R A
Q&~R)V(Q&S) 17 vI

~(Q & ~R) 10,18 RAA (17)
Q&S A
Q&~R)Vv(Q&S) 20 vI

~(Q&S) 10,21 RAA (20)
~P A

~R A

~P & ~R 23,24 &1

R 13,25 RAA (24)
S 426 -E
~P&S 23,27 &1

P 16,28 RAA (23)
Q 3,29 ->E

Q& ~R 24,30 &1

R 19,31 RAA (24)
S 4,32 -E

Q&S 30,33 &I
(~P& ~R) v (~P & S)H v (Q & ~R) v (Q & S)) 22,34 RAA (2)
P-oQ&R—-S) — 35 I(D

(~-P&~R)v(~P&S)) v(Q & ~R) v(Q&S))
(~P&~R) v (~P & S) V((Q & ~R) v(Q & S)) A [for —I]

P A [for —I]

~Q A [for RAA]
Q& ~R A

Q 40 &FE

~(Q & ~R) 3941 RAA (40)
Q&S A



Answers to Chapter 1 Exercises

43
39
46
39,46
39
37,39
50
50
38

(44)
(45)
(46)
(47)
(48)
(49)
(50
(51
(52)

37,38,39 (53)
37,38,39 (54)

3738  (55)
37 (56)
57 (57)
58 (58)
59 (59)
59 (60)
58 (61)
62 (62)
58,62 (63)
58,62  (64)
5758  (65)
37.57.58 (66)
67 (67)
67 (68)
57 (69)

37,57,58 (70)
37,5758 (71)

37,57
37
37

(72)
(73)
(74
(75)

(76)

Q

~(Q&S)
Q&~R)v(Q&S)
Q&S
~(Q&~R)v(Q&S))
~P&~R)Vv(~P&S)
~P & ~R

~P

~(~P & ~R)

~P&S

~P

Q

P—>Q

R

~S

Q&S

S

~(Q&S)
Q&-~R)v(Q&S)
Q& ~R

~R
~((Q&~R)v(Q&S))
~P&~R)Vv(~P&S)
~P & ~R

~R

~(~P & ~R)

~P&S

S

S

R—>S

P->Q&R—-S)

153

43 &E

39,44 RAA (43)
A

42,46 vE

45,47 RAA (46)
3748 vE

A

50 &E

38,51 RAA (50)
49,52 vE

53 &E

38,54 RAA (39)
55 -1 (38)

A [for —I]

A [for RAA]

A

59 &E

58,60 RAA (59)
A

61,62 VE

63 &E

57,64 RAA (62)
37,65 vE

A

67 &E

57,68 RAA (67)
66,69 VE

70 &E

58,71 RAA (58)
72 =>1(57)
56,73 &I

(~P&~R)v(~P & S)) v(Q& ~R) v(Q & S)) —» 74 =1 (37)

PoQ&R—-S)
P->Q&R—-S)

(P& ~R) v (-P & S)) v(Q& ~R) v (Q & §))

(it) derived rules allowed

1
1

M
@3]

P->Q&R—-YS)
P—-Q

36,75 <1

1 &E
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QT Q0 /= = s

11

16
17
17

20
20

16
16
16
16
16
16
16

3)
“
&)
(6)
(N
®)
®
(10)
an
12)
(13)
(14)
(15)

16)
an
(18)
19)
(20)
21
(22)
(23)
(24)
(25)
(26)
27
(28)
(29)
(30)

3D

R—>S
~PvQ
~RvS

~PvQ) & (~RVvYS)
~P&(~RVvS)v(Q&(~RVYS))

~P& (~R v S)

(~P & ~R) v (~P & S)
~P&(~RVS) = (~P&~R)V (~P&S)

Q& (~RvS)

Q&~R)v(Q&S)
Q& (-RVvS) > Q&~R)vV(Q&S)

Answers to Chapter 1 Exercises

1 &E
2v—
3v—>
4,5 &1

6 Dist

A

8 Dist

9 —>I(8)
A

11 Dist
12 >I(11)

(~P&~R) v (~P & S)) v ((Q & ~R) v (Q & S)) 7,10,13 Sim Dil

P->Q&R-—>S)—
(~P & ~R) v (~P & S)) v(Q & ~R) v (Q & §))

14 -1 (1)

(~P&~R)V(~P&S) v(Q&~R)v(Q&S)) A

(~P & ~R) v (~P & S)

~P & (~RvS)

~P&~R)v(~-P&S)—>~P&(~RVYS)
Q&~-R)vQ&S)

Q& (~RvYS)

Q&~R)VQ&S) Q& (~RVYS)
~P&(~RVvS)v(Q&(~RVYS))
~PvQ) & (~RVYS)

~PvQ
~RvS
P—-Q
R—->S

P->Q&R—-YS)

A

17 Dist

18 I (17)
A

20 Dist

21 -1 (20)
16,19,22 ComDil
23 Dist

24 &E

24 &E

25 v—

26 v—
27,28 &E

(~P&~R)v(~P & S)) v(Q & ~R) v(Q & S)) — 29 =1 (16)

P->Q &R —->YS)
Po>Q&R—-S <
(~-P&~R)v(-P&S) v((Q&~R)v(Q&S))

15,30 &1



Answers to Chapter 2 Exercises 155

Chapter 2
Exercise 2.1

i ii

PQ Pv(~Pv Q) PQ ~P&Q) VP
TT TF T TTET T
TF TF F TFTF T
FT TT T FTTF T
FF TT T FFTF T

ii v

PQ ~P—->Q—P PQ PvQv(-P&Q)
TT F T T TT T TF F
TF T F T TF T TF F
FT F T T FT T TT T
FF F T T FF F FTF
v vi

PQR PVvQ->Rv~P PQR RO~PVR&Q)
TT T T T FF TTT TF T T
TTF T F FF TTF TF F F
TF T T T TF TFT FF F F
TF F T F FF TFF TF F F
FTT T T TT FTT TT T T
FTF T T TT FTF FTT F
FF T F T TT FFT TT T F
FF F F T TT FFF FTT F

vii viii

PQ P&Qe=Q—-Q—-P) PQ Pe~Q e (-Pe~Q)

TT T T T T TT FF FF TF
TF F T T T TF TT FF FT
FT F F T F FT TF FT FF
FF F T T T FF FT FT TT
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X

PQR

TT

T

TTF

TF
TF
FT

T
F
T

FTF

FF
FF

X

POQRS P&QVR&S)->P&R)V(Q&S)

TT
TT
TT
TT
TF
TF
TF
TF
FT
FT
FT
FT
FF
FF
FF
FF

T
F

TT
TF
FT
FF
TT
TF
FT
FF
TT
TF
FT
FF
TT
TF
FT
FF

P Q)< (PvR— (~Q > R))

e e

ol T B ol Bl e BB - e e - I I S

Exercise 2.2

S N
[\

VALID
M
@
©)
Q)
&)
(©)

e
Mo H A A A
HHRE TS
e s

T T T
T F T
T F T
T F F
T T T
F F T
F F T
F F T
T T T
F F T
F F T
F F T
T T F
F F T
F F T
F F T
P&~Q A
P Q

P

Q

~Q

F

e R T T el B B R S I I T I

T R

NG R R T R R B QIENEE R RN R R

vl s B o e o T B R o T B o e ol s B B I e s

Answers to Chapter 2 Exercises

A [for RAA]
1 &E

2,3 BP

I &E

4,5RAA (2)



Answers to Chapter 2 Exercises

ii INVALID
P:T Q:F R:T

it INVALID
P:T Q:F R:F

iv VALID
(1 PvQ >R
2 ) P
2 A3) PvQ
12 @) R
1 (5) PSR
v INVALID

P:T QT R:F

vi VALID

1 (1) (P> ~P)> (~-P > P)
2 ~P

2 3) P —~P

1,2 @) ~P P

1,2 (5) P

1 (6) P

vii INVALID

P:T Q:F R:T

viii INVALID

P.T Q:F R:T S:F

ix INVALID
P:F Q:F R:F

X INVALID

P:T Q:F R:T S:F

xi VALID
1 (1) PvQ
2 ) P

2 3) ~P >R

157

A

A [for —1]
2 vl

1,3 -E

4 >I1(2)

A

A [for RAA]
2 TC

1,3 -5E

2.4 ->E
2,5RAA(2)

A
A [for —1]
2 FA
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>

=.
=
o

e e e N
[N NS

1,2,4
1,2,3

XV

1G]
)
(6)
)
®)

VALID
M
2)
3)
1G]
&)
(6)

VALID
8]
2
3)
“
&)
(6)
)
®)
&)

VALID
8))
@
3)
“
&)
(6)
)

P—>(~-P>R)

Q

~Q—=R
Q—-(+~Q—=R)
(~P>R) v (~Q > R)

PoR->PVv-~Q)
~R—>PvQ

Q

PvQ
R—->PvQ

~Q

~R&~P—>QvVR)
Qe R

R & ~P) & ~(Q vR)
R & ~P

R

Q

QvR

~(QVR)
~QeR)

P> (Q&R—S)
P

~S

Q&R
Q&R—>S

S

~(Q&R)

INVALID

P:F

QF R:T

Answers to Chapter 2 Exercises

3512

A [for —I]
5FA

6 —>I(5)

1,4,7 Com Dil

A

A

A [for RAA]
3vl

4TC
2,5RAA (3)

A

A [for RAA]
1 Neg—

3 &E

4 &E
2,5BP

6vI

3 &E

7,8 RAA (2)

A

A

A

A [for RAA]
1,2 ->E

4,5 -E

2,6 RAA (4)
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Xvi INVALID

P:T

xvii VALID

Q:F R:F S:F T:F

1 (H Q->P->R&~Q)
2 2) ~Q—>~(TvV)
3 3) U&S« P
4 (G ~(§ - ~U)
4 (5) S&U
4 (6) U&S
34 ) P
8 (8) T
8 ) TvV
2,8 (10) Q
1,28 (11 P->R&~Q
1,2,3,4,8 (12) R&~Q
1,2,3,4,8 (13) ~Q
1,234 (14 ~T
1,2,3 (15) ~§ - ~U)—>~T
1,23 (16) S —->-~Uv-~T
XViii INVALID
P:T Q:F R:F S:F T:F U:F
Exercise 2.4.2
i P:F Q:T
i P:T Q:F
it P.T QT R:F
v P:F Q:F R:T
v P:T Q:F R:T
vi P:F Q:F R:F S:T
vit P:T Q:F R:T S:F T:T
viil P:F Q:F R:T
ix P:T QT R:F S:T T:F
X P:T Q:F R:T S:F
xi P:T Q:F R:F S:F T:T
Xik P:F Q:T R:F S:T T:T
Xiti VALID

1 (1

P—(~-Q—>~R&-~S)

159

A

A

A

A [for —I]
4 Neg—

5 Comm

3,6 BP

A [for RAA]
8 vl
29MTT
1,10 -E
7,11 -E

12 &E

10,13 RAA (8)
14 —=I1(4)
I5v—>

V:T W:F
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1.4

1,3,4
1,34
1,3,4
1,3,4
1,3,4
1,3,4
1,2,3

Xiv
b %
XVi
XVvii

—_ = O

1,2
1,2
1,2
1,2

Xvili

2)
3)
C))
)
(6)
(M
®)
©)]
(10)
an
12)

P:F
P:T
P:T
VALID
(1
2
3)
4
(5
6)
(7N
3
9
(10)

VALID
M
@3]
3)
“)
&)
(6)
)
®)
©)]
10

Answers to Chapter 2 Exercises

~R & S)

~Q > ~R&~S
~R & ~S

~S
R—S
S—>R

Re S
~P

Q:T R:T S:F T:F
Q:F R:T S:F T:F U:F
Q:F R:T S:F

~(P - ~Q &R)
~R & ~P

P& ~(~Q&R)
P

~(~Q&R)
~~Qv-~R

R

~Q

Q

P&Q

P->Q&-Q—->P&R)->SVvT—-~Q)
Q

P—>Q

~Q->P&R

P->Q&(~Q—>P&R)

SvT—-~Q

~(SvT)

~S & ~T

~(~S—>T)

Qo~(~S->T)

A
A
A

1,4 ->E
3,5 >E
6 &E
6 &E

7FA
8 FA

9,10 &1
2,11 RAA (4)

1 Neg—
3&E
3&E

5 DM
2,4 BT
6,7 VE
8 DN
4,9 &1

A
A

2TC

2 FA

34 &1
1,5 -E
2,6 MTT
7 DM

8 Neg—
9-I(2)
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Xix VALID

1 e Pv~Q—--~P&-~Q A [for —1]
2) P A [for RAA]

2 3 Pv-~Q 2vI

1,2 ] ~P & ~Q 23 5E

1,2 (5) ~P 4 &E

1 (6) ~P 2,5RAA(2)
D (PV~Q) > (P &~Q) > ~P 6 —I(1)

8 8 ~P A [for =1]

9 C)] Pv-~Q A [for =]

8.9 10 ~Q 89 VE

8,9 (11) ~P & ~Q 8,10 &I

8 (12) Pv~Q) - (~-P&~Q) 11 >I(9)
(13) ~P > (Pv-~Q) — (~P&~Q)) 12 ->I(8)
14) (Pv~Q) > (~P&~Q)) & ~P 7,13 &1

XX VALID

1 1) Qe ~Q A

2 2 Q A

1,2 3 ~Q 1,2BP

1 4 ~Q 2,3RAA(2)

1 %) Q 1,4 BP

1 (6) Qv (P& ~P) 5vl

1 @) P« ~P 4,6 vE

Chapter 3

Exercise 3.1.1

i Not a wif

ii Not a wif

it Universal

iv Existential

v Not a wif

vi Not a wif

vii Universal

viii Not a wff (but acceptable biconditional abbreviation given the parenthesis-

dropping convention)
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ix Negation
X Not a wif (but acceptable conditional abbreviation given the parenthesis-
dropping convention)
xi Not a wif (but acceptable conditional abbreviation given the parenthesis-
dropping convention)
xii Negation
Xiii Not a wif
Xiv Existential
XV Not a wif
XVi Atomic sentence
xVil Not a wif
xviii Not a wif
Xix Not a wif
XX Universal
XX1i Not a wif
XXil Not a wif
xxiil Negation
XXiv Biconditional
XXX Not a wif
Exercise 3.1.2
Open Formula Example WFF
i Fz dzFz
ii None
iii Geax
iv Gxy
Gyx
(Gxy & Gyx)
Vy(Gxy & Gyx)
v Gxy Ay~VxGxy
Hy ~Vy~Hy
vi Ax VxAX
Fxx AxFxx
vii Fxy
Hxyz
Jz
(Hxyz & Jz)

Yz(Hxyz & Jz)
(Fxy — Vz(Hxyz & J2))
Vy(Fxy — Vz(Hxyz & Jz))
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viii Fxx
Fxy
VyFxy
ix Hz
Jx
(Hz v Jx)
dz(Hz v Jx)
~dz(Hz v Ix)
X Fxx
(Ha v Fxx)
~(Ha v Fxx)
Xi None
xii Fx
Xiti Fx VxFx
X1V Fyyy
(Fyyy & P)
XV Fzx
Hxyz
(Fzy <> Hxyz)

Exercise 3.2

Translation scheme is provided only where it is not obvious.

alt: indicates an alternative, logically equivalent translation.
amb:  indicates non-equivalent rendering of an ambiguous sentence.
inc! indicates a common, but incorrect answer.
1 Vx(Dx — Mx)
inc! Vx(Dx & Mx)
2 Ix(Sx & Ox)
inc! Ix(Sx — Ox)
3 Vx(Fx — ~Ex)
alt: ~3Ix(Fx & Ex)
inc! ~¥x(Fx — Ex)
4 ~Vx(Fx — Px)
alt: Ax(Fx & ~Px)
5 ¥x(Rx — ~Ex) & Vx(Ax = ~Ex)

alt: Vx(Rx v Ax — ~Ex)
inc! Vx(Rx & Ax — ~Ex)
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inc!

inc!

inc!

alt:

alt:
10
alt:
11
12
alt:
inc!
13
14
15
alt:
16
17
138
alt:

amb:

20
21
22

23-29

Answers to Chapter 3 Exercises

Ix(Px & Ax) & Ix(Rx & Ax)

Ix((Px & Rx) & Ax)

3x((Px v Rx) & Ax)

Vx(Gx — Lx)

Vx(Lx — Gx)

Vx(Sx = (Px — Tx v Bx))

Vx(Sx & Px — Tx v Bx)

Vx(Mx < Px)

¥x((Mx — Px) & (Px — Mx))

Vx(Fx = ~Wx v Ex)

Vx(Fx & Wx — Ex)

(3x(0x & Cx) & Ix(0Ox & Mx)) & ~Ix(Cx & Mx)
Vx(Ix — Px)

Vx(~Px — ~Ix)

Vx(Px — Ix)

Vx(Ax = (~Wx — Nx))

Vx(Ax > (Nx = ~Wx))

Ix(Sx & (Px & Fx)) & ~Vx(Px & Fx — Sx)
Ix(Sx & (Px & Fx)) & Ix((Px & Fx) & ~Sx)
Wa & Vx(Wx — Mx) - Ma

Vx(Sx — (~Nx v Mx))

Vx(0x & Ex - ~Px)

~3x((0Ox & Ex) & Px)

Vx(Px - ~Hx)

~¥x(Px — Hx) [possible reading in some regional dialects of English]
~Vx(Px - Cx)

Vx(Mx & Wx — Bx)

Ax(Mx & Wx) & Fx)

Translation scheme I using single-place predicates only:

To: o.is a trick

Wa: o is a whale
Sou Shamu can do o
Cao o can do a trick
8: Shamu

Note: Strictly we should use a letter from a-d for a name, but the use of s for
Shamu is more perspicuous.
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23 Vx(Tx — Sx)
24 Vx(Tx — Sx)
25 ~Vx(Tx — Sx)
26 Vx(Tx — ~Sx)
alternative translation that is not logically equivalent: ~Cs
27 JIx(Wx & Cx) — Cs
Vx(Wx & Cx — Cs) Note difference in scope.
ambi: Vx(Wx - Cx) > Cs Less natural reading.

amb ii: If any whale can do a trick, Shamu can do that same trick.
This reading is not expressible using single-place predicates only.

28 Vx(Wx — Cx) - Cs Note scope again.
29 Ix(Wx & Cx) = Vx(Wx — Cx)
amb Vx(Wx = Cx) = Vx(Wx = Cx) This reading is less natural.

23-29  Translation Scheme II using many-place predicates

To: ais a trick
Cof3: o can do B
Wou o is a whale
s: Shamu
23 Vx(Tx — Csx)
24 Vx(Tx — Csx)
25 ~Vx(Tx — Csx)
alt: Ix(Tx & ~Csx)
26 Vx(Tx — ~Csx)
27 Ixy(Wx & Ty) & Cxy) — Jz(Tz & Csz)

alt: Vxy((Wx & Ty) & Cxy) — 32(Tz & Csz)) Scope!
amb-i: Vxdy(Wx — Ty & Cxy) — 3z(Tz & Csz)
amb-ii: Vxy((Wx &Ty) & Cxy) — Csy)
This is the ambiguous reading not expressible with the previous translation scheme.

28 VxAy(Wx — (Ty & Cxy)) — 3z(Tz & Csz)
alt: Vx(Wx — Jy(Ty & Cxy)) — Jz(Tz & Csz)
29 Ixy(Wx & Ty) & Cxy) = Vx(Wx — y(Ty & Cxy))

amb:  Vxdy(Wx — (Ty & Cxy)) » Vx(Wx — Jy(Ty & Cxy))

30 Agb
31 dxAxb
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32
33
34
35
36

amb:

37

amb:

38
39
40
41
alt:
42
alt:

IxAgx
VxAbx
VxAxb
JxyAxy
IxVyAxy
VydxAxy
VxdyAxy
JyVxAxy
VXyAxy
VxAxx
IxAxx
Vx~Axx
~IXAXX
AxVy~Axy
Jx~dyAxy

Translation Scheme for 43-46.

Sopy:

Pou

43

amb:

44
45
46

47
48
alt:

amb:

49
50

amb:

51
52

amb:

53

o said B toy
. is a person

Vx(Px — AyVz(Pz — Sxyz))
Vxy(Px & Py — dzSxzy))
Vx(Px — dyz(Pz & Sxyz))
Vx(Px — Jy(Py & ~3zSxzy))
Vxy(Px & Py — ~3zSxzy)

Ixyz((Rx & (Cy & Sxy)) & (Dz & Lxz))
Ix(Fx & Vy(Hy — Sxy))

IxVy(Fx & (Hy — Sxy))

Ix(Fx & dy(Hy & Sxy))

Ix(Fx & Vy(My — Sxy))

Ix(Wx & Vy(Fy & Exy — My))

Ix(Wx & Vy(Exy — Fy & My))

Ix(Wx & Vy(Fy & My — ~Exy))

Answers to Chapter 3 Exercises

Ixy((My & Fy) & Exy) — Vx(Sx — Jy(My & Fy) & Exy))
Ixy((My & Fy) & Exy) — Ix(Sx & Jy(My & Fy) & Exy))
Vwxyz((Jw & Txw) & (Oy & Tzy) — Lxz) [Tafp: ois (s tail]
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--alt;
54
alt:

55

56

57

Vwxyz((Jw & Tx) & Bxw) & ((Oy & Tz) & Bzy) — Lxz) [Bop: o belongs
to Bl

Vx(Jy(Cy & Sxy) — Ax)

Vxy(Cy & Sxy — Ax)

Yuvxy(Bu & Pvu —» (Hx & Pyx = Mvy)) &

Yuvwx(Ou & Evu — (Mw v Bw) & Exw — Avx & ~Mvx))

Ambiguous.

i. The amount eaten by some whales is more than the amount eaten by any
fish.

Translation scheme:

Ao o is an amount (of food)
Fo: o is a fish

Eolp: o eats B amount (of food)
Gof: o is greater than B

Ix(Wx & Ay((Ay & Exy) & Vzw(Fz & Aw & Ezw — Gyw)))
ii. The amount eaten by some whales is more than the amount eaten by all
the fishes combined.

Addition to translation scheme:
a: the amount eaten by all the fishes combined

Ixy((Wx & Ay) & (Exy & Gya))

Ix(Mx & Vy(My — (Gxy <> ~Gyy)))

(Using identity)

58
59

alt:

60
61
62

Ix(Cx & Vy(Cy — y=x))

dx x=p

Ix(x=p & Vy(y=p — y=x))

Ixy(((Tx & Ty) & x #y) & (Ebx & Eby))

Vx(x#b — Exb) & ~Ebb

Vx(Dx — Jy((Ty & Byx) & Vz(Tz & Bzx — y=z))

Exercise 3.3.1

i is an instance of v
ii is an instance of vi
ii is an instance ix
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iv is an instance of i

iv is an instance of iii
X is an instance of i

Exercise 3.3.2

S87 Ix(Gx & ~Fx), Vx(Gx — Hx) - Ix(Hx & ~Fx)

1 M
2 @
2 €)
4 Q)
4 o)
2.4 ()
4 @)
24 (®)
2.4 9)
1,2 (10)

S88 Ix(Gx & Fx), Vx(Fx — ~Hx) = 3x~Hx

1 M
2 @3]
2 3)
4 “
4 )
4 (6)
24 @)
24 8
1,2 C)]

S89 Vx(Gx — ~Fx), Vx(~Fx — ~Hx)  Vx(Gx — ~Hx)

1 M
2 2)
1 3)
2 1G]
1,2 5)

1,2 ©6)

Ix(Gx & ~Fx)
Vx(Gx — Hx)
Ga — Ha

Ga & ~Fa
Ga

Ha

~Fa

Ha & ~Fa
JIx(Hx & ~Fx)
Jdx(Hx & ~Fx)

Ix(Gx & Fx)
Vx(Fx — ~Hx)
Fa — ~Ha

Ga & Fa

Ga

Fa

~Ha

dx~Hx

dx~Hx

Vx(Gx = ~Fx)
Vx(~Fx — ~Hx)
Ga — ~Fa

~Fa — ~Ha

Ga — ~Ha
Vx(Gx — ~Hx)

Answers to Chapter 3 Exercises

A
A
2VE

A [for dE on 1]
4 &E

3,5 >E

4 &E

6,7 &1
831
1,93E (4)

A

A

2 VE

A [for JE on 1]
4 &E

4 &E

3,6 -FE

731

1.8 3E (4)

I VE
2VE
34HS
5VI
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S91 ¥x(Gx — dy(Fy & Hy)) - Vx~Fx — ~dzGz

1 (N
1 (2)
3 3)
3 4
5 &)
6 6)
1,6 ©)
8 (8)
8 9)
3.8 (10)
136 (D
135 (12
1,3 (13)

1 (14)

S92 Vx(Gx — Hx & Jx), Vx(Fx v ~Jx = Gx) F Vx(Fx — Hx)

1 8]
2 )
1 3)
2 “
5 &)
5 6)
2,5 (7
1,2,5 (8)
1,2,5 9

12 (10)
12 (11

Vx(Gx — Jy(Fy & Hy))
Ga — Jy(Fy & Hy)
Vx~Fx

~Fa

dzGz

Ga

Jy(Fy & Hy)

Fa & Ha

Fa

~3zGz

~3zGz

~dzGz

~dzGz

Vx~Fx — ~dzGz

Vx(Gx — Hx & Jx)
Vx(Fx v ~Jx — Gx)
Ga—>Ha&Ja

Fav ~Ja— Ga

Fa

Fav ~Ja

Ga

Ha & Ja
Ha

Fa — Ha
Vx(Fx — Hx)

S93 Vx(Gx & Kx ¢ Hx), ~3Ix(Fx & Gx) F Vx~(Fx & Hx)

8]
@
3)
1G]
&)
3 (6)
3 )

— = L) = L N —

Vx(Gx & Kx < Hx)
~Jx(Fx & Gx)

Fa & Ha

Ga & Ka < Ha

Ha

Ga & Ka

Ga

169

A

1 VE

A [for —I]
3VE

A [for RAA]

A [for JE on 5]
2,6 -5E

A [for dE on 7]
8 &E

49 RAA (5)
7,10 3E (8)
5,11 3E (6)
5,12 RAA (5)
13 51(3)

A

A

1 VE
2VE

A [for —1]
Svi

4,6 ->E

3,7 -E
8 &E

9 -1 (5)
10 V1

A

A

A [for RAA]
1 VE

3 &E

4,5 BP

6 &E
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1,3
1,3
1,2
1,2

S95

B i S NP SN SN UV D

SIS
~

1.2,4
1,2,3
1,2

S96

L NN =

—_

1.2,4
1,2
1,2

S101

®)
©)]
(10)
an
12)

Vx(~Gx v ~Hx), Vx((Jx - Fx) = Hx) F ~dx(Fx & Gx)

)
@)
3)
@)
3)
(©)
@)
(8)
©
(10)
an
(12)
(13)
(14)

~3x(~Gx & Hx), Vx(Fx - ~Hx) - Vx(Fx v ~Gx — ~Hx)

@
)
3)
1G]
&)
(6)
)
8
©)]
(10)
an

Fa
Fa & Ga

Ix(Fx & Gx)
~(Fa & Ha)
Vx~(Fx & Hx)

Vx(~Gx v ~Hx)
Vx((Jx = Fx) - Hx)
Ix(Fx & Gx)

Fa & Ga

Fa

Ga

~Ga v ~Ha

~Ha

Ja—>Fa

(Ja — Fa) —» Ha
Ha

~Jx(Fx & Gx)
~Jx(Fx & Gx)
~3x(Fx & Gx)

~dx(~Gx & Hx) A
Vx(Fx — ~Hx)

Fa — ~Ha

Fav ~Ga

~(~Ga — ~Ha)

~Ga & Ha

Jx(~Gx & Hx)

~Ga — ~Ha

~Ha

Fav ~Ga — ~Ha
Vx(Fx v ~Gx — ~Hx)

Vx(Fx <> Gx) F VxFx <> VxGx

M

Vx(Fx < Gx)

Answers to Chapter 3 Exercises

3 &E

7.8 &1

931

2,10 RAA (3)
11Vl

A

A

A [for RAA]
A [for JE on 3]
4 &E

4 &E

1 VE

6,7 VE

5TC

2VE

9,10 -E
8,11 RAA (3)
3,12dE (4)
3,13RAA (3)

A

2VE

A [for —1]

A [for RAA]
5 Neg—
631
1,L7RAA (5)
3,4,8 Sim Dil
9-14)

10 VI
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2 2) VxFx A [for 1]
2 3) Fa 2 VE

1 )] Fa & Ga 1 VE

1,2 5) Ga 3.4 BP

1,2 (6) VxGx 5 VI

1 (7N VxFx — VxGx 6 -1(2)

8 ) VxGx A [for -1
3 “ Ga 8 VE

1.8 (10) Fa 4.9 BP

1,8 (11) VxFx 10 VI

1 (12)  VxGx — VxFx 11 —1(8)

1 (13) VxFx & VxGx 7,12 &1

S102 IxFx — Vy(Gy — Hy), 3xJx — IxGx F Ix(Fx & Jx) — JzHz

i (H IxFx - Vy(Gy — Hy) A

2 2) IxIJx — IxGx A

3 3) Ix(Fx & Jx) A [for —I]

4 4) Fa&Ja A [for JE on 3]
4 5) Fa 4 &E

4 (6) Ja 4 &E

4 @) IxFx 531

4 (8) IxJx 64l

1.4 ) Vy(Gy — Hy) 1,7 -E

24 (10) IxGx 2,8 5E

11 11) Gb A [for JE on 10]
1.4 (12) Gb —»> Hb 9 VE

14,11 (13) Hb 11,12 -E
14,11 (14) JzHz 1331

124 (15  FHz 10,14 3E (11)
1,2,3 (16) dzHz 3 I5FE4)

1,2 a7 Ix(Fx & Jx) — JzHz 16 =1 (3)

S105 Vx(Fx v Hx — Gx & Kx), ~Vx(Kx & Gx) |- Ix~Hx

1 D Vx(Fx v Hx - Gx & Kx) A

2 2) ~Vx(Kx & Gx) A

1 3) Fav Ha— Ga & Ka I VE

4 @ ~3x~Hx A [for RAA]
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107

— O N W W R W N =W

—_ -
N O

13
14
1,14
1,13

)
(6)
(N
®)

&)
(10)

(an
12)

Answers to Chapter 3 Exercises

~Ha A

dx~Hx 531

Ha 4,6 RAA (5)
Fav Ha 7vI

Ga & Ka 3,8 -E

Ka & Ga 9 Comm
Vx(Kx & Gx) 10VI

dx~Hx 2,11 RAA (4)

Vx(Fx <> VyGy) - VxFx v Vx~Fx

M
)
3)
“
&)
(6)
)
®)
©)]
10
an
12)
(13)
(14
(15)
(16)
a7
(18)
19)
(20)
21
(22)
(23)

Vx(Fx <> VyGy) A

~VxFx A [for —1]
~3x~Fx A [for RAA]
~Fa A

dx~Fx 431

Fa 35RAA(4)
VxFx 6 VI

Ix~Fx 2,7RAA (3)
~Fa A [for JE on 8]
Fa & VyGy 1 VE

~VyGy 9,10 BT
~YyGy 8,11 JE (9)
dxFx A [for RAA]

Fa A [for 3E on 13]
VyGy 10,14 BP

VyGy 13,15 3JE (14)
~3xFx 12,16 RAA (13)
Fa A [for RAA]
dxFx 1831

~Fa 17,19 RAA (18)
Vx~Fx 20 V1

~VxFx — ¥x~Fx 21 =I(2)
VxFx v Vx~Fx 22 v—

Vx(Dx — Fx) - Vz(Dz — (Vy(Fy — Gy) — Gz))

M
)

Vx(Dx — Fx) A
Da A
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1,3
1,2,3
1,2

S111

[N TS R T T S

—_ = e e e
N

1,12
1,12
1,12
1,11

3)
“
&)
(6)
(N
®)
®
(10)

Vy(Fy — Gy)

Da — Fa

Fa — Ga

Da— Ga

Ga

Vy(Fy — Gy) — Ga

Da — (Vy(Fy — Gy) — Ga)
Vz(Dz - (Vy(Fy — Gy) — Gz))

VxFx F ~3xGx ¢ ~(Ix(Fx & Gx) & Vy(Gy — Fy))

8]
2
3)
“
&)
(6)
(M
®)
©)]
(10)
an
12)
13)
(14)
(15)
(16)
an
(18)
19)
(20)
@n
(22)

VxFx

~3xGx

Ix(Fx & Gx) & Vy(Gy — Fy)
Ix(Fx & Gx)

Fa & Ga
Ga

IxGx

3xGx

~(Ix(Fx & Gx) & Vy(Gy — Fy))

~3xGx — ~(Ix(Fx & Gx) & Vy(Gy — Fy))
IxGx

Ga

Fa

Ga—>Fa

Vx(Gx — Fx)
Fa & Ga

Ix(Fx & Gx)

Ix(Fx & Gx) & Vx(Gx — Fx)

Ix(Fx & Gx) & Vx(Gx — Fx)

JxGx — Ix(Fx & Gx) & Vx(Gx — Fx)
~(Ix(Fx & Gx) & ¥x(Gx — Fx)) — ~IxGx
~3xGx & ~3x(Fx & Gx) & Vy(Gy — Fy))

Vx(JyFyx — VzFxz) - Vyx(Fyx — Fxy)

M
)
3)

Vx(AyFyx — VzFxz)
Fab
JyFyb
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A

1 VE
3VE
4,5 HS
2,6 -E
7 51 (3)
8 -I(2)
9 VI

A

A [for —I]
A [for RAA]
3 &E

A {for dE on 4]
5 &E

6dIl

4,73E (5)

2,8 RAA (3)

9 —I(2)

A [for —I]

A [forJE on 11]
1 VE

13 TC

14 V1
12,13 &I

1631

15,17 &I
1,I83E (12)
19 I (1)
20 Trans
10,21 &I

A
A [for —1]
24l
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1,2
1,2

S125%

2,6
2,6
2,6
1,2

Answers to Chapter 3 Exercises

4 JyFyb — VzFbz
5) VzFbz

(6) Fba

7 Fab — Fba

(®) Vx(Fax — Fxa)
) Vyx(Fyx — Fxy)
) Vxy(Fxy — ~Fyx)
2) Vy(Fby — ~Fyb)
3) (Fbb — ~Fbb)
4 JxFxx

(5) Fbb

(6) ~Fbb

7N ~JxFxx

8) ~JxFxx

&) ~3xFxx

a=b, b#c  azc
) a=b

2) b#c
3) a=c
(G b=c
&) a#C

Vx x=x — JxFx, Vx(~Fx v Gx) - Ix(Fx & Gx)

8 Vx x=x — IxFx
2) Vx(~Fx v Gx)
3) a=a

4 VX x=x

5 dxFx

(6) Fa

@) ~Fa v Ga

(8) Ga

“ Fa & Ga

(10) Ix(Fx & Gx)
(11)  3x(Fx & Gx)

1 VE
3,4 -E
5 VE
6 I
7 V1
8 VI

A

1 VE

2 VE

A [for RAA]
A [for JE]
3,5 ->E

5,6 RAA (4)
4,73E (5)
48RAA (4)

A

A

A [for RAA]
1,3=E
24RAA(3)

A
A
=l
3VI

1.4 >E

A

2 VE

6,7 VE

6,8 &1
931

5,10 3E (6)
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S127%

W W YW W W N =

|95}

3,6
23
1,2

S130*

L S S e T

P~

2,46
24,6
24,6
24,6
1,24
1,2,3
1.2

Ix((Fx & Vy(Fy — y=x)) & Gx), ~Ga I~ ~Fa

M
)
3)
“
®)
(6)
)
®)
©)]
10
an
12)

Vx3yGyx, Vxy(Gxy =~Gyx) F~AyVx(xzy — Gyx)

8]
2
3)
1G]
)
(6)
(N
®)
&)
10)
an
(12)
(13
(14)
(15)
(16)
an

Ix((Fx & Vy(Fy — y=x)) & Gx)
~Ga

(Fb & Vy(Fy — y=b)) & Gb
Fb & Vy(Fy — y=b)

Vy(Fy — y=b)

Fa

Fa — a=b

a=b

Gb

Ga

~Fa

~Fa

Vx3yGyx
Vxy(Gxy — ~Gyx)
yVx(x2y — Gyx)
Vx(x#a — Gax)
JyGya

Gba

Vy(Gay — ~Gya)
Gab — ~Gba
~Gab

b#a — Gab

b=a

Gaa

~Gaa

~JyVx(xzy — Gyx)
~JyVx(xzty — Gyx)
~JyVx(xzty — Gyx)
~JyVx(x2y = Gyx)
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5VE

6,7 ->E

3 &E

8,9 =E

2,10 RAA (6)
1,11 dE(3)

A

A

A [for RAA]
A [for JE]
IVE

A [for JE]

2 VE

7 VE

6.8 ->E

4 VE

9,10 MTT
6,11=E
9,11=E

12,13 RAA (3)
5,14 3E (6)
3,15dE#)
3,16 RAA (3)
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Exercise 3.4.1

S150 ~VxPx - dx~Px

(a) ~VxPx - 3x~Px
1 (D) ~VxPx
2 2) ~Jx~Px
3 3 ~Pa

3 4) dx~Px
2 5) Pa

2 (6) VxPx
1 @) Ix~Px
(b) Ix~Px F ~VxPx
1 M dx~Px
2 2) VxPx
3 3) ~Pa

2 @ Pa

3 (5) ~VxPx
1 (6) ~¥xPx

S155 Vx(Px — Q) 4+ 3IxPx = Q

(a) Vx(Px - Q)F3IxPx > Q
1 (1 ¥x(Px — Q)

2 ) JxPx

1 3) Pa—Q

4 )] Pa

1.4 ®) Q
1,2 (6) Q

1 ™ EE;PX -Q

(b) JxPx - QF Vx(Px = Q)
1 ) IxPx = Q

2 2) Pa

2 3) JxPx

Answers to Chapter 3 Exercises

A

A
A

331
24RAA(3)
5VI
L6RAA(2)

A

A
A

2VE
3.4 RAA (2)
1,53E (3)

A
A

I VE
A

3,4 >E
2,53E (4)
6-I(Q)

231
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1,2 )
1 5)
1 6)

Q
Pa—Q
Vx(Px - Q)

S156 VxPx v VxQx F Vx(Px v Qx)

1 8]
)
3)
1G]
)
(6)
0
®)
©)]
(10)
an
1 (12)

oM NN

~N

S157 Ixy(Px & Qy) - IxPx & IxQx

VxPx v ¥xQx

VxPx

Pa

Pav Qa

Vx(Px v Qx)

VxPx — Vx(Px v Qx)
VxQx

Qa

Pav Qa

Vx(Px v Qx)

VxQx — Vx(Px v Qx)
Vx(Px v Qx)

(a) Ixy(Px & Qy) F IxPx & IxQx

M
@3]
3)
“
3)
(6)
)
®)
&)
10

= W W W W W W N

~~
=
2

M
@3]
3)
1G]

Do e e

Ixy(Px & Qy)
Jy(Pa & Qy)
Pa & Qb

Pa

Qb

dIxPx

JxQx

IxPx & dxQx
IxPx & IxQx
IxPx & dxQx

IxPx & IxQx - Ixy(Px & Qy)

IxPx & IxQx
dxPx

IxQx

Pa

177

1,3 5E
4 ->I(2)
5VI

A

A

2VE
3vl

4 VI
5-1(2)
A

7 VE

8 vl

9 VI

10 =1 (7)
1,6,11 Sim Dil

A
A

A

3 &E
3&E
431

531

6,7 &1
28 3E (3)
1,93E (2)

1 &E
I &E
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5 5)
4,5 ©6)
4,5 )
4.5 ®
1.4 C)]

1 (10)

S160 P — 3xQx 4+ Ix(P — Qx)

(a) P — 3xQx F Ix(P - Qx)
1 €] P — dxQx

2 2) ~3x(P — Qx)
3 3) P—Qa

3 )] Ix(P — Qx)
2 (5) ~(P - Qa)

2 (6) P & ~Qa

2 @) P

1,2 (®) IxQx

2 )] ~Qa

10 10 Qa

10 (11 Ix(P — Qx)
1,2 (12) Ix(P — Qx)
1 13 Ax(P — Qx)
(b) Ix(P - Qx) F P — 3IxQx
1 4] Ix(P — Qx)
2 2) P

3 3) P—>Qa

2.3 ) Qa

2,3 5) IxQx

3 (6) P — 3xQx

1 @) P — dxQx
Exercise 3.4.2

T40 F Vx(Fx = Gx) — (VxFx — VxGx)

1 8]
2 2)

Qb

Pa & Qb
Jy(Pa & Qy)
Ixy(Px & Qy)
Ixy(Px & Qy)
Ixy(Px & Qy)

Vx(Fx — Gx)
VxFx

Answers to Chapter 3 Exercises

A

4,5 &1
631

731

3,8 3E (5)
2,9 3E (4)

A

A

A

331
24RAA (3)
5 Neg—

6 &E

1,7 -E

6 &E

A

9,10 RAA (2)
8,11 3E (10)
2,12 RAA (2)

A
A

A

2.3 >E
441
551(2)
1,6 3E (3)

A [for —I]
A [for —I]



Answers to Chapter 3 Exercises

1 3) Fa — Ga
2 (G Fa
1,2 (5) Ga
1,2 (6) VxGx
1 N VxFx — VxGx
(8) Vx(Fx — Gx) - (VxFx — VxGx)

T42 F 3x(Fx v Gx) <> 3xFx v 3xGx

1 D Ix(Fx v Gx)

2 (2) ~(3xFx v 3xGx)

2 3) ~3JxFx & ~3IxGx

2 4) ~3xFx

2 %) ~JxGx

2 (6) Vx~Fx

2 (7N Vx~Gx

2 (8) ~Fa

2 9) ~QGa

10 (10) Fav Ga

2,10 an Ga

10 (12) IxFx v IxGx

1 (13) IxFx v IxGx
(14) Ix(Fx v Gx) — (IxFx v 3xGx)

15 (15) IxFx v IxGx

16 (16) dxFx

17 a7 Fa

17 (18) Fav Ga

17 (19) Ix(Fx v Gx)

16 20 Ix(Fx v Gx)
20 IxFx — 3Ix(Fx v Gx)

22 (22) dxGx

23 (23) Ga

23 (24) Fav Ga

23 (25) Ix(Fx v Gx)

22 (26) dx(Fx v Gx)

27) IxGx — Ix(Fx v Gx)
15 (28) Ix(Fx v Gx)
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1 VE
2 VE
34 —>E
5VI
6-1(2)
7 51D

A [for —1]

A [for RAA]

2 DM

3 &E

3 &E

4 QE

5QE

6 VE

7VE

A [fordE on 1]
8,10 vE

9,11 RAA (2)
1,12 JE (10)

13 =I()

A [for —I1]

A

A [for JE on 16]
17 vI

1831

16,19 3E (17)
20 =1 (16)

A

A [for JE on 22]
23 vI

2431

22,25 JE (23)
26 —I(22)
15,21,27 Sim Dil
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T46

- - R I SR R SR e

T59

_— = DN DN N

wn

1,9
1,2
1,2
1,2
1,2
1,2
1,2

(29) IxFx v 3xGx — Ix(Fx v Gx)
(30) Ix(Fx v Gx) ¢« IxFx v IxGx

F (3xFx — IxGx) — Ix(Fx — Gx)

8 dxFx — 3xGx
2) ~3x(Fx — Gx)
3) Vx~(Fx = Gx)
(€Y)] ~(Fa — Ga)
5 Fa & ~Ga

(6) Fa

@) JxFx

(®) IxGx

) Ga

(10) ~Ga

(11) Ix(Fx — Gx)
(12) Ix(Fx — Gx)
(13) Ix(Fx — Gx)

(14) (IxFx — IxGx) — Ix(Fx — Gx)

(VxFx < P) > Ix(Fx < P)

8 VxFx < P
) ~3x(Fx < P)
3) Vx~(Fx < P)
@) ~(Fa < P)
(5) P

(6) VxFx

) Fa

® P > Fa

)] Fa—P

(10) Fa P

(11) ~(Fa—> P)
(12)  Fa&~P

(13) Fa

(14) ~P

(15) VxFx

(16) P

a7 Ix(Fx & P)

Answers to Chapter 3 Exercises

28 -1 (15)
14,29 &I

A [for —1]

A [for RAA]
2 QE

3VE

4 Neg—

5 &E

64l

1,7 -E

A [for JE on 8]
5 &E

9,10 RAA (2)
8,11 JE (9)
2,12 RAA (2)
13 -I(1)

A

A

2QE
3VE

A

1,5BP

6 VE

7 -1(5)
A

8,9 <1
4,10 RAA (9)
11 Neg—
12 &E

12 &E

13VI
1,15 BP

14,16 RAA (2)



Answers to Chapter 4 Exercises
(18) (VxFx & P) > Ix(Fx & P)

Exercise 3.4.3

Vxz(Px — Rxz)
JyVz(Fy — Hyz & Jz)
Vxy(Fxa — Gyaa)
Vxdy(~Fx — Hy)
Vx3AyVz~(Fyx — ~Gzx)

LS o R

17 =I(1)

181

Chapter 4

Exercise 4.1.1

ia Fa

ib Fa & Fb

ic Fa & Fb & Fc

iia Fa& P

iib (FavFb) &P

tic (Fav FbvFc)&P
tia Fa — Ga

iiib Fa & Fb — Ga v Gb
tic Fa & Fb & Fc — Ga v Gb v Gc

iva (Ga<>P)v Ha

ivb ((Ga¢ P) & (Gb & P)) v (Ha & Hb)

ive ((Gae P) & (Gb & P) & (Ge < P)) v (Ha & Hb & Hce)
va Ha v Ga

vb Ha v Ga v Gb

ve Hav Gav Gb v Ge

via Fa v Ha

vib Fa v Ha v Fb v Hb

vic Fav Ha v Fb v Hb v Fc v Hc

viia Fa <> Fa & ~Ha

vitb Fa & Fb <> (Fa & ~Ha) v (Fb & ~Hb)

viic Fa & Fb & Fc < (Fa & ~Ha) v (Fb & ~Hb) v (Fc & ~Hc)
vitia ~(Fa & Ga)

vitib ~(Fa & Ga & Fb & Gb)
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vikic ~(Fa & Ga & Fb & Gb & Fc & Gc)

ixa ~(Fa & ~Ga)

ixb ~((Fa & ~(Ga & Gb)) & (Fb & ~(Ga & Gb)))

ixXc ~((Fa &~(Ga&Gb &Gc)) &(Fb&~(Ga & Gb &Gc)) &(Fc &~(Ga &Gb &Gc)))
xa ~(Ga <.Ha & ~Fa)

xb ~(Ga & Gb « (Ha & ~Fa) v (Hb & ~Fb))

XC ~(Ga & Gb & Gc < (Ha & ~Fa) v (Hb & ~Fb) v (Hc & ~Fc¢))
Exercise 4.1.2

ia T ib F ic T

iia F iib T iic F

tia F tiib T iiic T

iva T ivb T ive F

va F vb T Ve T

via T vib T vic T

viia T viib F viic T

viiia T viiib T vilic T

ixa F ixb T ixc F

xa F xb T XC F

Exercise 4.2
i U:{ab} F:{a} G:{}

Fa & Fb — Ga & Gb - (Fa — Ga) & (Fb — Gb)
il U:{a,b} F:{a} G:{b}

Fav Fb —» Gav Gb I (Fa — Ga) & (Fb — Gb)
it Same model as ii

(Fa v Fb) & (Ga v Gb) I (Fa & Ga) v (Fb & Gb)

iv Same model as i

(Fa v Ga) v (Fb v Gb) - (Fa & Fb) v (Ga & Gb)
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v Same model as i

(Fa — Ga) v (Fb — Gb)  (Fa v Fb) — (Ga v Gb)
vi U:{ab} F:{ab} G:{a}

(Fa — Ga) v (Fb —» Gb) + (Fa & Fb) — (Ga & Gb)
vii Same model as 1

Fa & Fb <> Ga & Gb - (Fa <> Ga) & (Fb & Gb)
viii Same model as ii

Fav Fb < Gav Gb | (Fa & Ga) & (Fb < Gb)
ix U:{ab} F:{a} P is FALSE

(Fa& Fb)<> PH (Fae P) & (Fb < P)
X U:{ab} F:{a} P is TRUE

(FavFb)e PH(Faes P) & (Fb < P)

xi Same model as ix

(Fa <> P)v (Fb< P) I (Fav Fb) <> P

X1 Same model as x
Fae>P)v(Fbe P)F(Fa& Fb)«< P
Xiti U:{a} FH{} G:{} H:{a}
Fa — Ga, Ga > Hat+ Ha — Fa
xi U:{a} F{} G:{ } H:{ }
Fa — ~Ha, Ha —» ~GaF Fa & Ga
XV U:{a,b} F:{a} G:{a,b} H:{b}
Fa v Fb < Ga & Gb, ~((Fa — Ha) & (Fb — Hb)) - Ha v Hb —-~Ga v ~Gb
xvi U:{a} F:{a} G:{a} H:{a}
Gav ~Ha, Ga & Fat+ ~Ha
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Xvil

Xvili

Xix

XX

Answers to Chapter 4 Exercises

U:{a} F:{a} G:{ } H:{a}

Fa & Ga — Ha,Fa & Hat Ga

U:{a,b} F:{a} G:{a} H:{b}

Fa v Fb, Ga v Gb, Ha v Hb I~ (Fa v Ga — Ha) & (Fb v Gb — Hb)
U:{ab} F:{a}

~(Fa & Fb) - ~Fa & ~Fb

Same model as i

(Fa— Gav Gb) v (Fb - Gav Gb) - Fav Fb — Ga v Gb

Exercise 4.3.1

ii

it

iv

vi

U:{a,b} F:{{a,a)}
Faa v Fbb - Faa & Fba & Fab & Fbb

U:{a,b} F:{{ab), (b,a)}
(Faa v Fba) & (Fab v Fbb) | Faa v Fbb

Same model as ii

(Faa v Fab) & (Fba v Fbb) - (Faa & Fab) v (Fba & Fbb)

U:{a} F:{} G:{{(a,a)}

~Faa, Gaa — ~Faa I ~Gaa

Same model as v
Fa — Gaat Fa v ~Gaa
U:{ab}

V:{{a,a,a), (b,b,b), (a,a,b), (b,b,a)}
((Vaaa & Vaab) v (Vaba & Vabb)) & ((Vbaa & Vbab) v (Vbba & Vbbb))

F ((Vaaa & Vaab) & (Vbaa & Vbab)) v ((Vaba & Vabb) & (Vbba & Vbbb))
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vit

viii

X

U:{a,b} T:{{ab)}
~(Taa & Tab) & ~(Tba & Tbb) - ~(Taa v Tab) & ~(Tba v Tbb)

U:{ab,c} F:{{(a,b), (b,c){a,a)(c,a)}
U:{ab,c} F:{{a,b), (b,c), {c,a)} G:{{(a,b)}
U:{ab} F:{{a,a)} G:{{(a,b), (b,a)}

Exercise 4.4

ix

U: {m, n} a:m b:m cin d:n

m=m, n=n = m=n

U:{a, b, c} F: {a, b}

[(Fa & Fa) & aza) v (Fa & Fb) & a#b) v ((Fa & Fc) & a#c)]

v [((Fb & Fa) & b#a) v (Fb & Fb) & b#b) v (Fb & Fc) & b#c)]
v [((Fc & Fa) & c#a) v (Fc & Fb) & ¢#b) v ((Fc & Fe) & ¢#c)]

- Fa & Fb & Fc

U: {a, b} F: {{a, b), a )}
((Faa < a#a) & (Fab < a#b) & (Fac < a#c))
v (Fba < b#a) & (Fbb < b#b) (Fbc < b#c))
v ((Fca < c#a) & (Fcb < ¢#b) (Fee < c#c))

F (Faa & Faa — a=a) & (Faa & Fab — a=b) & (Faa & Fac — a=c)
& (Fab & Faa — b=a) & (Fab & Fab — b=b) & (Fab & Fac — b=c)
& (Fac & Faa — c=a) & (Fac & Fab — c=b) & (Fac & Fac — c=c)
& (Fba & Fba — a=a) & (Fba & Fbb — a=b) & (Fba &Fbc — a=c)
& (Fbb & Fba — b=a) & (Fbb & Fbb — b=b) & (Fbb & Fbc — b=c)
& (Fbe & Fba — c=a) & (Fbc & Fbb — c=b) & (Fbc & Fbc — c¢=¢)
& (Feca & Fea — a=a) & (Fca & Fcb — a=b) & (Fca &Fce — a=c)

& (Feb & Fea — b=a) & (Fch & Feb — b=b) & (Fbb & Fbc — b=c)
& (Fee & Fea — c=a) & (Fee & Feb — c=b) & (Fbc & Fbc — c=c)
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Answers to Chapter 4 Exercises

Exercise 4.5.2

ii

iii

Vxyz(Fxy & Fyz — Fxz), Vx3yFxy F JxFxx
U:N.
F: {{m,n) : m<n}

Ist premise: T
2nd premise: T
Conclusion: F

Vx3dyVz(Fxy & (Fyz — Fxz)) - IxFxx
U:N.
F: {{m,n) : m<n}

Premise: T.

(‘Every number is less than some other number, and if this other number is
less than a third number then the first one is also less than the third one.”)
Conclusion: F.

(‘Some number is less than itself.”)

Vx3dyFxy, Vxyz(Fxy & Fyz — Fxz), Vx~Fxx

F Vxy(Gx & ~Gy — Fxy v Fyx)
U:N.
F: {{m,n) : n is an even number greater than m}
G: {m:miseven}

Ist premise: T

(‘For each number there is an even number that is greater.”)

2nd premise: T

(‘If y is an even number greater than x, and z is an even number greater than
y, then z is an even number greater than x.”)

3rd premise: T

(‘No number is an even number greater than itself.”)

Conclusion: F.

(‘If x is even and y is odd, then either x is an even number greater than y or y
is an even number greater than x.”)
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iv Vx3dyz(Fxy & Fzx), Vxyz(Fxy & Fyz — Fxz) - 3xy(Fxy & Fyx)
U:N.
F: {{m,n) : either m and n are even and m<n, or
m and n are odd and m>n,
or m is odd and n is even. }

v Vx~Fxx, Vx3yVz(Fxy & (Fyz = Fxz)) - Vxyz(Fxy & Fyz — Fxz)
U:N
F: {{m.n) : Tk(k>0 & (=2%(m+1)—1 or n=2Xm+1)))}

vi Vxyz(Gxy & Gyz — Gxz), Vxy(Gxy = ~Gyx),
Vx3yGyx, Vx(x#a — Gxa) - Iy Vx(x2y — Gyx)
U:N
G: {(mn): m>n}
a: zero
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Index

Ampersand, 4, 70
elimination, 19-20
introduction, 19
Annotation, 18-25, 33, 38, 80-86
See also Line of proof
Antecedent, 7-8, 12, 22-23, 29, 41, 51,
94
Argument, 1-3, 14, 17-18, 26, 28, 39,
50, 53-54, 69, 99-100, 102,
110-111
Arrow, 4, 70
elimination, 19, 23
introduction, 19, 22
Associativity, 30, 95
Assumption, 18, 82, 85
vacuous discharge, xii
Assumption set, xi, 18-25, 37, 80-86
See also Line of proof
Atomic sentence
of predicate logic, 61
of sentential logic, 6
At least, 70-71

Biconditional, 7-8, 11, 13, 25, 40, 61
ponens, 30
tollens, 30

Bitransposition, 30

Bound variable, See Variable

Commutativity, 30

Conclusion, 1-3 , 17-18 , 26, 32, 35,
37, 39, 44-47, 50-51, 53-54,
85,99-101, 104-105, 111

Conditional, 7, 11-12, 22-23, 25,
4042, 51,94, 109

proof, 22

Confinement, 89

Conjunction, 6, 11, 13-14, 20, 40, 61,
95,109

Connective, 34, 7, 9-10, 39-40, 42,
57,61, 69,91, 97
binary, 6, 40
truth-functional, 40
unary, 6
Consequent, 7, 12, 22-23 , 29, 4041,
51
true, See True consequent
Contingent, 47-48
Counterexample, 53-54, 110
Countermodel, 99-102, 104-105, 107,
110-112
with identity, 107-108
infinite, 110-112
numerical, 111-112

de Morgan’s laws, 30
Denial, 7-8, 21, 24
Derived rules, 32-34, 36-37, 89
Dilemma (all forms), 29-30
Disjunction, 6, 11, 13, 20-21, 40, 61
Disjunctive syllogism, xiii, 21
Distribution, 30
Domain, See Universe
Double-arrow, 4
elimination, 19, 25
introduction, 19, 25
Double negation, 29, 36

Entailment, 2, 18

Exactly, 72

Existentialization, xiv, 76-78, 82

Existential, 60, 62, 64, 70-71, 89, 95,

104

elimination, xiii—xiv, 76, 83
expansion, See Expansion
generalization, 82
instantiation, xiv
introduction, 76, 82
quantifier, 60
wif, 62
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Expansion
of existential, 96
of universal, 95
Expression
of predicate logic, 60-61, 64, 65-66
of sentential logic, 5-7
Extensional context, 87
Extensions, 93-94, 97
of one-place predicates, 93
of n-place predicates, 103

False antecedent, 29
Finite interpretation, See Interpretation
Formula

open, 65, 76-78

well-formed, 6-7, 60-62

Hypothetical syllogism, 29

Identity, xv, 57, 71, 85, 99, 102
countermodels with, See Counter-
models
elimination, 76, 79, 86-87
introduction, 76, 79, 85
non-, 64
symbol, 59, 61
Importation/exportation, 30
Impossible antecedent, 29
Inconsistent, 47-49
Indirect proof, 24
Indirect truth table, 49
Infinite countermodel, See Counter-
models
Instance, 76, 78-79, 80, 83, 85
Intensional context, 87
Interpretation, 93-94 , 97, 99-101, 103
~104, 107-108, 110
finite, 103, 108
Invalid, See Valid
Invalidating assignment, 44, 49-51, 99

Index

Line number, 18-19, 22, 33
Line of proof, 18
Logical form, 11, 53, 69

Metalanguage, xv—xvi, 107, 109

Metavariable, 5, 59, 67

Model, 99. See also Countermodel;
Interpretation

Modus (ponendo) ponens, 23

Modus tollendo ponens, 21

Modus tollendo tollens, 29

Name, xiv, 57, 59, 61-62, 65, 67,
76-78, 80-83, 85-86, 97
extension, 107-109
instantial, 78, 83, 85, 95-96
Negated
arrow, 29
double-arrow, 30
Negation, 6-7, 11-12, 40, 61, 64
Neither, 13
Numerical countermodel, See Counter-
models

Ordered pair, 102
Ordered n-tuple, 102-103

Parentheses, 3, 5, 57
Parenthesis-dropping conventions, 9,
64
Predicate letters (predicates), 57-61,
67,99, 102-104, 108
Premise, 1-2, 17-18, 26, 32-33, 35,
37, 39, 43-47, 50-51, 53-54,
99-101, 104, 111-112
Prenex form, 91
Proof, 17-18
for a given argument, 18, 26
line of, 18, 37
primitive rules of, 19-26
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Quantifier, 57, 60, 64-66, 69-70, 78
exchange, 89-91
existential, 60, 71
scope, See Scope
universal, 60, 69

Reductio ad absurdum, xii, 19, 24
Reductio assumption, 24
Rules of proof, 17-26, 29-34, 79-87, 89
conditions on, 80~85
derived, 29-30,32-34, 89
primitive, 19, 79
of sentential logic, 19-33
of predicate logic, 79-86, 89

Scope, 65-66, 70, 91, 96, 104
wide vs. narrow, 66, 96
Sentence, 1, 7, 17-18, 28, 35, 39, 41,
47, 57, 78, 91, 93-94, 99,
103-104, 107-108, 110
atomic, 6, 61
of English, 5, 10-11, 13-14, 67-71
letter, 3, 5, 6, 31-32, 42, 44-45, 57,
59, 61,97
variable, 3
Sentential connective. See Connective
Sequent, 17, 28, 31-35, 37, 43-47,
50-51, 53-54, 89, 99-101,
104
Soundness, 2
Stylistic variants, 11
Subderivation, xi
Substitution
instance, 31-32
pattern, 31-32

Tautology, 47
Theorem, 35-38, 49, 85, 89
Tilde, 4, 89
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Translation scheme
for predicate Logic, 67-68
for sentential Logic, 10-11
Transposition, 30
True consequent, 29
Truth table, 39, 41, 43
indirect, 44
Truth value, 39-41, 93-94, 97, 103,
108
Truth-functional, 40
Turnstile, 17, 35
double, 28

Universalization, 76-77, 80, 89
Universal, 60, 69
elimination, 76, 80
expansion, See Expansion.
introduction, 80
quantifier, 60, 64, 70
wif, 61
Universe, 93-96, 99, 103-104,
107-108, 111-112

Validity, 1-2, 14, 26, 69, 99

checking with truth tables, 4345
Variable, 57-60, 65, 77-78

bound, 66

meta-, 5, 59

sentence, 3

unbound (free), 66, 78
Vocabulary

of predicate logic, 57, 60

of sentential logic, 3

Wedge, 4
elimination, xiii, 19, 21
introduction, 19, 20
Wedge-arrow, 29
Wiff. See Formula, well-formed.






