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Preface 

To the Student 
The most important thing for you to know about this book is that it is 
designed to be used with a teacher. You should not expect to learn 
logic from this book alone (although it will be possible if you have had 
experience with formal systems or can make use of the website at 
http://mitpress.mit.edu/LogicPrimer/). We have deliberately reduced to 
a minimum the amount of explanatory material, relying upon your 
instructor to expand on the ideas. Our goal has been to produce a text 
in which all of the material is important, thus saving you the expense 
of a yellow marker pen. Consequently, you should never turn a page of 
this book until you understand it thoroughly. 

The text consists of Definitions, Examples, Comments, and Exercises. 
(Exercises marked with asterisks are answered at the back of the 
book.) The comments are of two sorts. Those set in full-size type 
contain material we deem essential to the text. Those set in smaller 
type are relatively incidental-the ideas they contain are not essential 
to the flow of the book, but they provide perspective on the two logical 
systems you will learn. 

In this age of large classes and diminished personal contact between 
students and their teachers, we hope this book promotes a rewarding 
learning experience. 

To the Teacher 
We wrote this book because we were dissatisfied with the logic texts 
now available. The authors of those texts talk too much. Students 
neither need nor want page after page of explanation that require them 
to turn back and forth among statements of rules, examples, and 
discussion. They prefer having their teachers explain things to 
them-after all, students take notes. Consequently, one of our goals 
has been to produce a text of minimal chattiness, leaving to the 



instructor the task of providing explanations. Only an instructor in a 
given classroom can be expected to know how best to explain the 
material to the students in that class, and we choose not to force upon 
the instructor any particular mode of explanation. 

Another reason our for dissatisfaction was that most texts contain 
material that we are not interested in teaching in an introductory logic 
class. Some logic texts, and indeed some very popular ones, contain 
chapters on informal fallacies, theories of definition, or inductive logic, 
and some contain more than one deductive apparatus. Consequently, 
we found ourselves ordering texts for a single-semester course and 
covering no more than half of the material in them. This book is 
intended for a one-semester course in which propositional logic and 
predicate logic are introduced, but no metatheory. (Any student who 
has mastered the material in this book will be well prepared to take a 
second course on metatheory, using Lemmon's classic, Beginning 
Logic, or even Tennant's Natural Logic.) 

We prefer systems of natural deduction to other ways of representing 
arguments, and we have adopted Lemmon's technique of explicitly 
tracking assumptions on each line of a proof. We find that this 
technique illuminates the relation between conclusions and premises 
better than other devices for managing assumptions. Besides that, it 
allows for shorter, more elegant proofs. A given assumption can be 
discharged more than once, so that it need not be assumed again in 
order to be discharged again. Thus, the following is possible, and there 
is no need to assume P twice: 

1 (1) P + ( Q & R )  assume 
2 (2) P assume 
1 2  (3) Q & R from 1,2 



1 2  (4) Q from 3 
1 2  ( 5 )  R from 3 

1 (6) P + Q from 4, discharge 2 

1 (7) P + R  from 5, discharge 2 

1 (8) (P + Q) & (P + R) from 6,7 

Clearly, the notion of subderivation has no application in such a 
system. The alternative approach involving subderivations allows a 
given assumption to be discharged only once, so the following is 
needed: 

assume 
assume 
from 1,2 
from 3 

from 4, discharge 2 
assume 
from 1,6 
(same inference as at 3!) 
from 7 

from 8, discharge 6 

from 5,9 

The redundancy of this proof is obvious. Nonetheless, an instructor 
who prefers subderivation-style proofs can use our system by changing 
the rules concerning assumption sets as follows: (i) Every line has the 
assumption set of the immediately preceding line, except when an 
assumption is discharged. (ii) The only assumption available for 
discharge at a given line is the highest-numbered assumption in the 
assumption set. (iii) After an assumption has been discharged, that line 
number can never again appear in a later assumption set. (In other 



words, the assumption-set device becomes a stack or a first-in-last-out 
memory device.) 

There are a number of other differences between our system and 
Lemmon's, including a different set of primitive rules of proof. What 
follows is a listing of the more significant differences between our 
system and Lemmon's, together with reasons we prefer our system. 

Lemmon disallows vacuous discharge of assumptions. We allow 

it. Thus it is correct in our system to discharge an assumption by 

reductio ad absurdum when the contradiction does not depend on 

that assumption. Whenever vacuous discharge occurs, one can 

obtain a Lemmon-acceptable deduction by means of trivial 

additions to the proof. We prefer to avoid these additions. (Note 

that Lemmon's preclusion of vacuous discharge means that 

accomplishing the same effect requires redundant steps of &- 

introduction and &-elimination. For instance, Lemmon requires 

(a) to prove P k Q + P, while we allow (b). 

(a) 
1 (1) P assume 
2 (2) Q assume 
1 2  (3) Q & P  from 1,2 
1,2 (4) P from 3 

1 ( 5 )  Q + P  from 4, discharge 2 

(b) 
1 (1) P assume 
2 (2) Q assume 

1 (3) Q + P  from 1, discharge 2 



Lemmon's characterization of proof entails that an argument has 
been established as valid only when a proof has been given in 
which the conclusion depends on all of the argument's premises. 
This is needlessly restrictive, since in some valid arguments the 
conclusion is in fact provable from a proper subset of the 
premises. We remove this restriction, allowing a proof for a 
given argument to rest its conclusion on some but not all of the 
argument's premises. 

We have replaced Lemmon's primitive v-Elimination rule by 
what is normally known as Disjunctive Syllogism (DS). We 
realize that Lemmon's rule is philosophically preferable, as it is 
a pure rule; however, DS is so much easier to learn that 
pedagogical considerations outweigh philosophical ones in this 
case. 

Despite the preceding point, we have kept the 3-elimination rule 
used by Lemmon. Although slightly more complicated than the 

more common rule of 3-Instantiation, this rule frees the student 
from having to remember to instantiate existential quanti- 
fications before instantiating universal quantifications. It also 
frees the student from having to examine the not-yet-reached 
conclusion of the argument, to determine which instantial names 

are unavailable for a given application of 3-Instantiation. 

Furthermore, at any point in a proof using 3-elimination, some 
argument has been proven. If the proof has reached a line of the 
form 

m,. . . ,n (k) z ... 

then the sentence z has been established as provable from the 
premise set {m, . . . ,n} . (Here the right-hand ellipsis indicates 



which rule was applied to yield z, and which earlier sentences it 
was applied to.) This is quite useful in helping the student 

understand what is going on in a proof. In a system using 3- 
instantiation, however, this feature is absent: there are correct 
proofs some of whose lines do not follow from previous lines, 

since the rule of 3-instantiation is not a valid rule. For instance, 

the following is the beginning of a proof using 3-instantiation. 

assumption 

1 3-instantiation 

Line 2 does not follow from line 1. This difference between 3- 

elimination and 3-instantiation can be put as follows: in an 3- 
elimination proof, you can stop at any time and still have a 

correct proof of some argument or other, but in an 3-instantiation 
proof, you cannot stop whenever you like. It seems to us that 

these implications of 3-instantiation's invalidity outweigh the 

additional complexity of 3-elimination. In an 3-elimination 
system, not only is the system sound as a whole, but every rule is 

individually valid; this is not true for an 3-instantiation system. 

Whereas Lemmon requires that existentialization (existential 
generalization) replace all tokens of the generalized name by 
tokens of the bound variable, we allow existentialization to pick 
up only some of the tokens of the generalized name. 

We have abandoned Lemmon's distinction between proper 
names and arbitrary names, which is not essential in a natural 
deduction system. The conditions on quantifier rules ensure that 
the instantial name is arbitrary in the appropriate sense. (We 
comment on this motivation for the conditions in the text.) 



In many cases, we have deliberately not used quotation marks to 
indicate that an expression of the formal language is being mentioned. 
In general, we use single quotes to indicate mention only when 
confusion might result. (We hope no one is antagonized by this 
flaunting of convention. Trained philosophers may at first find the 
absence of quotes disconcerting, but we believe that we are making 
things easier without leading the student astray significantly.) 

We have tried to present the material in a way that reveals clearly the 
systematic organization of the text. This manner of presentation makes 
it especially easy for students to review the material when studying, 
and to look up particular points when the need arises. Consequently, 
there is little discursive prose in the text, and what seemed unavoidable 
has been relegated to the Comments. We hope to have produced a 
small text that is truly student-oriented but that still allows the 
instructor a maximum of flexibility in presenting the material. 

The Second Edition 
With one exception, the changes to the second edition have been 
minimal. We have added a treatment of identity to chapters 3 and 4. In 
chapter 3 this required merely a slight modification to the definition of 
wff, some comments on translation, and the inclusion of introduction 
and elimination rules for identity. The changes made to chapter 4 are 
more extensive. In the first edition we avoided overt reference to the 
object language/metalanguage distinction and had no need to introduce 
into the specification of interpretations the extensions (denotations, 
referents) of names, but the inclusion of identity in the language 
necessitates them. To keep matters simple, when giving interpretations 
for sentences that involve identity we use italicized names in the 
metalanguage, and we recommend that no member of the universe of 
an interpretation be given more than one metalinguistic name. This 
makes it easy to specify whether or not two names of the object 



language have the same extension in an interpretation, for the same 
metalinguistic name will be used for names denoting the same object. 
Expansions now involve the use of italicized names, so that strictly 
speaking they are not wffs of the object language. This does not affect 
their use in determining truth values of quantified wffs in an 
interpretation, and facilitates their use in determining truth values of 
wffs involving identity. (We realize that italicization is not available 
for hand-written exercises, so we recommend that instructors adopt a 
convention such as underlining for blackboard presentations.) The 
addition of the material on identity is supplemented with new exercises 
in chapters 3 and 4. We have tried to organize the new material in such 
a way that an instructor who wishes to omit it can do so easily. 

In chapter 1,  a set of exercises has been inserted whose proofs do not 

require +I and RAA. That is, these proofs do not involve the 
discharge of assumptions. These exercises are intended to allow 
students to become comfortable with the remaining rules of proof 

before they are forced to learn the more complicated mechanics of +I 
and RAA. 

In chapter 3 we have waited until after the section on translations to 
introduce the notions of a wff's universalization, existentialization, and 
instance. This change reduces the chance of the student's confusing the 
rules for constructing universally quantified wffs, where at least one 
occurrence of a name must be replaced by a variable, and univers- 
alization, where all occurrences of the name must be replaced. 



Web Support 
A variety of interactive exercises and an automated proof checker for 
the proof systems introduced in this book can be accessed at 
http://mitpress.mit.edu/LogicPrimer/. Use of the software requires 
nothing more than a basic web browser running on any kind of 
computer. 
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Chapter 1 
Sentential Logic 

1.1 Basic logical notions 

argument, Definition. An ARGUMENT is a pair of things: 
premises, a set of sentences, the PREMISES 
conclusion a sentence, the CONCLUSION. 

Comment. All arguments have conclusions, but not all 
arguments have premises: the set of premises can be 
the empty set! Later we shall examine this idea in 
some detail. 

Comment. If the sentences involved belong to English (or any other 

natural language), we need to specify that the premises and the 

conclusion are sentences that can be true or false. That is, the 

premises and the conclusion must all be declarative (or indicative) 

sentences such as 'The cat is on the mat' or 'I am here', and not 

sentences such as 'Is the cat on the mat?' (interrogative) or 'Come 

here!' (imperative). We are going to construct some formal 

languages in which every sentence is either true or false. Thus this 

qualification is not present in the definition above. 

validity Definition. An argument is VALID if and only if it is 
necessary that ifall its premises are true, its conclusion 

is true. 

Comment. The intuitive idea captured by this defi- 
nition is this: If it is possible for the conclusion of an 

argument to be false when its premises are all true, 
then the argument is not reliable (that is, it is invalid). 



If true premises guarantee a true conclusion then the 
argument is valid. 

Alternate formulation of the definition. An argument is 
VALID if and only if it is impossible for all the 

premises to be true while the conclusion is false. 

entailment Definition. When an argument is valid we say that its 

premises ENTAIL its conclusion. 

soundness Definition. An argument is SOUND if and only if it is 
valid and all its premises are true. 

Comment. It follows that all sound arguments have 

true conclusions. 

Comment. An argument may be unsound in either of 
two ways: it is invalid, or it has one or more false 
premises. 

Comment. The rest of this book is concerned with validity rather 

than soundness. 

Exercise 1.1 Indicate whether each of the following sentences is 
True or False. 

i* Every premise of a valid argument is true. 
ii* Every invalid argument has a false conclusion. 
iii" Every valid argument has exactly two premises. 
iv* Some valid arguments have false conclusions. 
v* Some valid arguments have a false conclusion despite 

having premises that are all true. 



vi * 
vii* 
viii* 
ix * 
x * 

A sound argument cannot have a false conclusion. 
Some sound arguments are invalid. 
Some unsound arguments have true premises. 
Premises of sound arguments entail their conclusions. 
If an argument has true premises and a true conclusion 
then it is sound. 

formal 
language 

vocabulary 

sentence 
letter 

sentence 
variable 

A Formal Language for Sentential Logic 

Comment. To represent similarities among arguments 
of a natural language, logicians introduce formal 
languages. The first formal language we will introduce 

is the language of sentential logic (also known as 
propositional logic). In chapter 3 we introduce a more 
sophisticated language: that of predicate logic. 

Definition. The VOCABULARY OF SENTENTIAL 
LOGIC consists of 

SENTENCE LETTERS, 
CONNECTIVES, and 
PARENTHESES. 

Definition. A SENTENCE LETTER is any symbol 
from the following list: 

A, .. . , z ,  Ao, ... , zo, Al, ... ,z l ,  .. . , 

Comment. By the use of subscripts w e  make available 
an infinite number of sentence letters. These sentence 
letters are also sometimes called SENTENCE VARI- 
ABLES, because we use them to stand for sentences 
of natural languages. 



connectives Definition. The SENTENTIAL CONNECTIVES 
(often just called CONNECTIVES) are the members 
of the following list: -, &, v, +, e. 

Comment. The sentential connectives correspond to 
various words in natural languages that serve to 
connect declarative sentences. 

tilde - The TILDE corresponds to the English 'It is not the 
case that7. (In this case the use of the term 'connective' 
is odd, since only one declarative sentence is negated 
at a time.) 

ampersand & The AMPERSAND corresponds to the English 'Both 
. . . and . . .'. 

wedge v The WEDGE corresponds to the English 'Either . . . or 
. . .' in its inclusive sense. 

arrow + The ARROW corresponds to the English 'If . . . then 
2 

double- H The DOUBLE-ARROW corresponds to the English 
arrow 'if and only if'. 



Comment. Natural languages typically provide more than one way 

to express a given connection between sentences. For instance, the 

sentence 'John is dancing but Mary is sitting down' expresses the 

same logical relationship as 'John is dancing and Mary is sitting 

down'. The issue of translation from English to the formal 

language is taken up in section 1.3. 

) and ( The right and left parentheses are used as punctuation 
marks for the language. 

expression Definition. An EXPRESSION of sentential logic is 
any sequence of sentence letters, sentential connec- 
tives, or left and right parentheses. 

Examples. 
(P + Q) is an expression of sentential logic. 
)PQ+- is also an expression of sentential logic. 
(3 + 4) is not an expression of sentential logic. 

metavariable Definition. Greek letters such as (I and y~ are used as 
METAVARIABLES. They are not themselves parts of 
the language of sentential logic, but they stand for 
expressions of the language. 

Comment. (@ + y ~ )  is not an expression of sentential 
logic, but it may be used to represent an expression of 
sentential logic. 
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well-formed Definition. A WELL- FORMED FORMULA (WFF) 
formula of sentential logic is any expression that accords with 

the following seven rules: 

(1) A sentence letter standing alone is a wff. 

atomic [Definition. T h e  sentence  letters are the ATOMIC 
sentence SENTENCES of the language of sentential logic.] 

(2) If @ is a wff, then the expression denoted by -@ is 
also a wff. 

negation [Definition. A wff of this form is known as a NEGA- 
TION, and -@ is known as the NEGATION OF @.I 

(3) If @ and v are both wffs, then the expression 
denoted by (@ & v )  is a wff. 

conjunction [D@nition. A wff of this form is known as a CON- 
JUNCTION. @ and y~ are known as the left and right 

CONJUNCTS, respectively.] 

(4) If @ and v are both wffs, then the expression 
denoted by (@ v v)  is a wff. 

disjunction [Definition. A wff of this form is known as a DIS- 
JUNCTION. 4 and y~ are the left and right 
DISJUNCTS, respectively.] 

(5) If @ and y~ are both wffs, then the expression 
denoted by (@ + v)  is a wff. 



conditional, [Definition. A wff of this form is known as a CONDI- 
antecedent, TIONAL. The wff @ is known as  the ANTECEDENT 
consequent of the condi t ional .  The wff v is known as the 

CONSEQUENT of the conditional.] 

(6) If @ and v are both wffs, then the expression 
denoted by (@ w v) is a wff. 

biconditional [Definition. A wff of this form is known as a 
BICONDITIONAL. It is also sometimes known as an 
EQUIVALENCE.] 

(7) Nothing else is a wff. 

binary Definition. &, v, +, and H are BINARY CONNEC- 
and unary TIVES, since they connect two wffs together. - is a 
connectives UNARY CONNECTIVE, since it attaches to a single 

wff. 

sentence Definition. A SENTENCE of the formal language is a 

wff that is not part of a larger wff. 

denial Definition. The DENIAL of a wff @ that is not a 
negation is -@. A negation, -@, has two DENIALS: @ 

and --@. 

Example. 
-(P + Q) has one negation: --(P + Q) 
It has two denials: (P + Q) and --(P + Q). 

(P + Q) has just one denial: its negation, -(P + Q). 



Comment. The reason for introducing the ideas of a sentence and a 

denial will be apparent when the rules of proof are introduced in 

section 1.4. 

Exercise 1.2.1 Which of the following expressions are wffs? If an 
expression is a wff, say whether it is an atomic 
sentence, a conditional, a conjunction, a disjunction, a 
negation, or a biconditional. For the binary connec- 
tives, identify the component wffs (antecedent, con- 
sequent, conjuncts, disjuncts, etc.). 

i* 
ii* 

iii* 

iv* 

v* 
vi * 
vii* 

viii* 

ix * 
X* 
xi* 

xii* 

xiii* 

xiv * 
xv* 

A 

(A 
(A) 

(A + B) 

(A + ( 
(A + (B + C)) 

((P & Q) + R) 

((A & B) v (C + (D - GI)) 
-(A + B) 

-(P + Q) v -(Q & R) 
-(A) 
(-A) + B 

(-(P & P) & (P - (Q v -Q))) 
(-((B v P) & C) e ((D v -G) + H)) 

(-(Q v -(B)) v (E - (D v X))) 
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parenthesis- Comment. For ease of reading, it is often convenient to 
dropping drop parentheses from wffs, so long as no ambiguity 

conventions results. If a sentence is surrounded by parentheses then 
these may be dropped. 

Example. 
P + Q will be read as shorthand for (P + Q). 

Comment. Where parentheses  a re  embedded within 
sentences we must be careful if we are to omit any 
parentheses. For example, the expression P & Q + R 
is potentially ambiguous between ((P & Q) + R) and 
(P & (Q + R)). To resolve such ambiguities, we adopt 
the following convention: - binds more strongly than 
all the other connectives; & and v bind component 
expressions more strongly than +, which in turn binds 
its components more strongly than w. 

Examples. 
-P & Q + R is read as ((-P & Q) + R). 
P + Q e R i s  read as ((P + Q) HR). 

P v Q & R is not allowed, as it is ambiguous between 
(P v (Q & R)) and ((P v Q) & R). 

P + Q + R is not allowed, as it is ambiguous between 
(P + (Q + R)) and ((P + Q) + R). 

Comment. The expressions admitted by these paren- 
thesis-dropping conventions are not themselves well- 
formed formulas of sentential logic. 
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Exercise 1.2.2 Rewrite all the sentences in exercise 1.2.1 above, using 
the parenthesis-dropping conventions. Omit any paren- 
theses you can without introducing ambiguity. 

Exercise 1.2.3 State whether each of the following is ambiguous or 
unambiguous, given the parenthesis-dropping conven- 
tions. In the unambiguous cases, write out the sen- 
tences and reinstate all omitted parentheses. 

i * 
ii* 

iii* 

iv * 
v* 

vi * 
vii* 

viii* 

ix * 
X* 

1.3 Translation of English to Sentential Wffs 

translation Definition. A TRANSLATION SCHEME for the lan- 
scheme guage of sentential logic is a pairing of sentence letters 

with sentences of a natural language. The sentences in 
a translation scheme should be logically simple. That 
is, they should not contain any of the words 
corresponding to the sentential connectives. 
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logical form Definition. The LOGICAL FORM of a sentence of a 
natural language relative to a translation scheme is 
given by its translation into a wff of sentential logic 
according to that translation scheme. 

Example. 
Under the translation scheme 

P: John does well at logic 
Q: Bill is happy 

The sentence 
If John does well at logic, then Bill is happy 

has the logical form (P + Q). 

Comment. English provides many different ways of 
stating negations, conditionals, conjunctions, dis- 
junctions, and biconditionals. Thus, many different sen- 
tences of English may have the same logical form. 

stylistic Definition. If two sentences of a natural language have 
variants the same logical form relative to a single translation 

scheme, they are said to be STYLISTIC VARIANTS 
of each other. 

Comment. There are far too many stylistic variants of 
negations, conjunctions, disjunctions, conjunctions, 
and biconditionals to list here. The follow is a partial 
list of stylistic variants in each category. 



negations Let P translate the sentence 'John is conscious.' Here 
are a few of the ways of expressing -P: 

John is not conscious. 
John is unconscious. 
It is not the case that John is conscious. 
It is false that John is conscious. 

conditionals Stylistic variants whose logical form is (@ + u/), 
where @ is the antecedent and w is the consequent 
include the following: 

If 0, w. 
@ only if yf. 
@ is a sufficient condition for yr. 

@ is sufficient for w. 
Provided that @, y ~ .  
w provided that @. 
w on the condition that @. 
y~ is a necessary condition for @. 

y~ is necessary for 4. 
Whenever 4, yr. 
w if @. 
Given that @, w. 
In case @, \ ~ r .  
@ only on the condition that yr. 
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conjunctions Variants with logical form (@ & v) include the 
following: 

@ and W. 
Both @ and v. 
0, but W. 
@, although v. 
@ as well as W. 
Though 4, W. 
@, also W. 

disjunctions Variants with logical form (@ v W) include these: 

@ or W. 
Either @ or v. 
@ unless W. 

Comment. '@ unless W' is also commonly translated as 
(-v + $1. The proof techniques introduced in section 
1.4 can be used to show that this is equivalent to 

(@ v w1. 

biconditionals Variants having the logical form (@ w y ~ )  include the 
following: 

@ if and only if v. 
@ is equivalent to v. 
@ is necessary and sufficient for W. 
@just in case v. 

neither.. . English sentences of the form 'Neither @ nor vCr' have 
nor ... the logical form -(@ v v), or, equivalently, (-(I & -w). 
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tenses Comment. In English, the sentences 'Mary is dancing' 
and 'Mary will dance' have different meanings because 
of the tenses of their respective verbs. In some cases, 
when one is analyzing arguments it is important to 
preserve the distinction between tenses. In other cases, 
the distinction can be ignored. In general, a judgment 
call is required to decide whether or not tense can be 
safely ignored. 

Example. 
Consider the following two arguments: 

A If Mary is dancing, John will dance. 
Mary is dancing. 
Therefore, John is dancing. 

B If Mary dances, John will dance. 
If John dances, Bill will dance. 
Therefore, if Mary dances, Bill will dance. 

In A, if the difference between 'John will dance' and 
'John is dancing' is ignored, then the argument will 
look valid in translation. But this seems unreasonable 
on inspection of the English. 

In B, ignoring the difference between 'John will dance' 

and 'John dances' also makes the argument valid in 
translation. In this case, however, this seems reason- 
able. 



In the translation exercises that follow, assume that 
tense distinctions may be ignored. 

Exercise 1.3 Translate the following sentences into the language of 
sentential logic. 

Translation scheme for 1-20 
P: John dances. 
Q: Mary dances. 
R: Bill dances. 
S: John is happy. 
T: Mary is happy. 
U: Bill is happy. 

John is dancing but Mary is not dancing. 
If John does not dance, then Mary will not be happy. 
John's dancing is sufficient to make Mary happy. 
John's dancing is necessary to make Mary happy. 
John will not dance unless Mary is happy. 
If John's dancing is necessary for Mary to be happy, 
Bill will be unhappy. 
If Mary dances although John is not happy, Bill will 
dance. 
If neither John nor Bill is dancing, Mary is not happy. 
Mary is not happy unless either John or Bill is 
dancing. 
Mary will be happy if both John and Bill dance. 
Although neither John nor Bill is dancing, Mary is 

happy. 
If Bill dances, then if Mary dances John will too. 
Mary will be happy only if Bill is happy. 



Neither John nor Bill will dance if Mary is not happy. 
If Mary dances only if Bill dances and John dances 
only if Mary dances, then John dances only if Bill 
dances. 
Mary will dance if John or Bill but not both dance. 
If John dances and so does Mary, but Bill does not, 
then Mary will not be happy but John and Bill will. 
Mary will be happy if and only if John is happy. 
Provided that Bill is unhappy, John will not dance 
unless Mary is dancing. 
If John dances on the condition that if he dances Mary 
dances, then he dances. 

Translation scheme for 21-25 
P: A purpose of punishment is deterrence. 

Q: Capital punishment is an effective deterrent. 
R: Capital punishment should be continued. 
S: Capital punishment is used in the United States. 
T: A purpose of punishment is retribution. 

If a purpose of punishment is deterrence and capital 
punishment is an effective deterrent, then capital pun- 
ishment should be continued. 
Capital punishment is not an effective deterrent al- 
though it is used in the United States. 
Capital punishment should not be continued if it is not 
an effective deterrent, unless deterrence is not a pur- 
pose of punishment. 
If retribution is a purpose of punishment but deterrence 
is not, then capital punishment should not be con- 
tinued. 
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25" Capital punishment should be continued even though 
capital punishment is not an effective deterrent pro- 
vided that a purpose of punishment is retribution in 
addition to deterrence. 

1.4 Primitive Rules of Proof 

turnstile Definition. The TURNSTILE is the symbol k. 

sequent Definition. A SEQUENT consists of a number of 
sentences separated by commas (corresponding to the 
premises of an argument), followed by a turnstile, 
followed by another sentence (corresponding to the 
conclusion of the argument). 
Example. (P & Q) + R, -R & P k -Q 

Comment. Sequen t s  are nothing more than a 
convenient way of displaying arguments in the formal 
notation. The turnstile symbol may be read as 
'therefore'. 

proof Definition. A PRO OF is a sequence of lines contain- 
ing sentences. Each sentence is either an assumption or 
the result of applying a rule of proof to earlier 
sentences in the sequence. The primitive rules of proof 
are stated below. 



Comment. The purpose of presenting proofs is to de- 
monstrate unequivocally that a given set of premises 
entails a particular conclusion. Thus, when presenting 
a proof we associate three things with each sentence in 
the proof sequence: 

annotation On the right of the sentence we provide an ANNO- 
TATION specifying which rule of proof was applied 
to which earlier sentences to yield the given sentence. 

assumption set On the far left we associate with each sentence an 
ASSUMPTION SET containing the assumptions on 
which the given sentence depends. 

linenumber Alsoonthe le f t ,wewr i te thecur ren tLINENUM- 
BER of the proof. 

line of proof Definition. A sentence of a proof, together with its 
annotation, its assumption set and the line number, is 
called a LINE OF THE PROOF. 

Example. 
1,2 (7) P + Q & R  

? Line number ? 
Assumption set Sentence 

6 +I (3) 
Annotation 

proof for Definition. A PROOF FOR A GIVEN ARGUMENT 
a given is  a proof whose  las t  sentence  is theargument's 
argument conclusion depending on nothing other than the 

argument's premises. 
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primitive Definition. The ten PRIMITIVE RULES OF 
rules PROOF are the rules assumption, ampersand-intro- 

duction, ampersand-elimination, wedge-introduction, 
wedge-elimination, arrow-introduction, arrow-elimina- 
tion, reductio ad absurdum, double-arrow-introduction, 
and double-arrow-elimination, as described below. 

assumption Assume any sentence. 

Annotation: A 
Assumption set: The current line number. 
Comment: Anything may be assumed at any 

time. However, some assumptions 
are useful and some are not! 

Example. 
1 (1) P v Q  

ampersand- Given two sentences (at lines m and n),  conclude a 
intro conjunction of them. 

Annotation: m, n &I 
Assumption set: The union of the assumption sets at 

lines m and n. 
Comment: The order of lines m and n in the 

proof is i r re levant .  The l ines  re- 
ferred to by m and n may also be the 
same. 

Also known as: Conjunction (CONJ). 



Examples. 
1 (1) p A 
2 (2) Q A 

132 (3) P & Q  1,2 &I 
132 (4) Q & P  1,2 &I 
1 ( 5 )  P & P  1,l &I 

ampersand- Given a sentence that is a conjunction (at line m), con- 
elim clude either conjunct. 

Annotation: m &E 
Assumption set: The same as at line m. 
Also known as: Simplification (S). 

Examples. 

(a) 
1 (1) P & Q  
1 (2) Q 
1 (3) p 

wedge-intro Given a sentence (at line m), conclude any disjunction 

having it as a disjunct. 

Annotation: m vI 
Assumption set: The same as at line m. 
Also known as: Addition (ADD). 
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Examples. 

(a) 
1 (1) p A 
1 (2) P v Q  1 VI 
1 (3) (R H -T) v P 1 v1 

wedge-elim Given a sentence (at line m) that is a disjunction and 
another sentence (at line n) that is a denial of one of its 
disjuncts conclude the other disjunct. 

Annotation: m, n v E  
Assumption set: The union of the assumption sets at 

lines m and n. 
Comment: The order of m and n in the proof is 

irrelevant. 
Also known as: Modus Tollendo Ponens (MTP), 

Disjunctive Syllogism (DS). 
Examples. 

(a) 
1 (1) P v Q  A 
2 (2) -P A 

1 2  (3) Q 1,2 vE  



arrow-intro Given a sentence (at line n),  conclude a conditional 
having it as the consequent and whose antecedent 
appears in the proof as an assumption (at line m). 

Annotation: n +I (m) 
Assumption set: Everything in the assumption set at 

line n excepting m, the line number 
where the antecedent was assumed. 

Comment: The antecedent must be present in 
the proof as an assumpt ion.  We 
speak of DISCHARGING this as- 
sumption when applying this rule. 
Placing the number m in parentheses 
indicates it is the discharged assump- 
tion. The lines m and n may be the 
same. 

Also known as: Conditional Proof (CP). 

Examples. 

(a) 
1 (1) -p v Q 
2 (2) p 

132 (3) Q 
1 (4) P + Q 



arrow-elim Given a conditional sentence (at line m) and another 
sentence that is its antecedent (at line n), conclude the 
consequent of the conditional. 

Annotation: rn, n +E 
Assumption set: The union of the assumption sets at 

lines m and n. 
Comment: The order of m and n in the proof is 

irrelevant. 
Also known as: Modus Ponendo Ponens (MPP), 

Modus Ponens (MP), Detachment, 
Affirming the Antecedent. 

Example. 
1 (1) P + Q  
2 (2) p 

192 (3) Q 
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reductio ad Given both a sentence and its denial (at lines m and n), 
absurdurn conclude the denial of any assumption appearing in the 

proof (at line k). 

Annotation: m, n RAA (k) 
Assumption set: The union of the assumption sets at 

m and n, excluding k (the denied 
assumption). 

Comment: The sentence at line k is the assump- 
tion discharged (a.k.a. the REDUC- 
T I 0  ASSUMPTION) and the con- 
clusion must be a denial of the dis- 
charged assumption. The sentences 
at lines m and n must be denials of 
each other. 

Also known as: Indirect Proof (IP), -Introt -Elim. 

Examples. 

(a) 
1 (1) P + Q  
2 (2) -Q 
3 (3) p 

133 (4) Q 
1,2 (5) -P 

A 
A 
A 
1,3 +E 
2,4 RAA (3) 

A 
A 
A 
2,3 +E 
1,4 vE 
2,5 RAA (2) 



A 
A 
A 
2,3 RAA (1) 

double-arrow- Given two conditional sentences having the forms 
intro @ + y~ and y~ + @ (at lines m and n),  conclude a 

biconditional with @ on one side and y~ on the other. 

Annotation: m,n -1 
Assumption set: The union of the assumption sets at 

lines m and n. 
Comment: The order of m and n in the proof is 

irrelevant. 

Examples. 

1 (1) P + Q  
2 (2) Q + P  
1 2  (3) P-Q 
132 (4) Q-P 

double-arrow- Given a biconditional sentence @ - y~ (at line m), con- 
elim clude either @ + y~ or y~ + @. 

Annotation: m WE 
Assumption set: the same as at m. 

Also known as: Sometimes the rules -1 and WE 
are subsumed as Definition of Bicon- 

ditional ( d f . ~ ) .  



Examples. 

1 (1) P-Q 
1 (2) P + Q  
1 (3) Q + P  

Comment. These ten rules  of proof are t ru th-  
preserving . Given true premises, they will always 
yield true conclusions. This entails that if a proof can 
be constructed for a given argument, then the argument 
is valid. 

Comment. A number of strategies aid in the discovery of proofs, 

but there is no substitute for practice. We do not provide any proof- 

discovery strategies in this book-that is the instructor's job. We 

do provide plenty of exercises, so there should be no lack of 

opportunity to practice. 

Exercise 1.4.1 Fill in the blanks in the following proofs. 

ii* 



3,5 RAA 



28 Chapter 1 

Exercise 1.4.2 Give proofs for the following sequents. All of these 
proofs may be completed without using the rules +I 
or RAA. 

1.5 Sequents and Derived Rules 

double Comment. If a sequent has just one sentence on each 
turnstile side of a turnstile, a reversed turnstile may be inserted 

(4)  to represent the argument from the sentence on the 
right to the sentence on the left. 

Example. P - I F  P v P 

Comment. This example corresponds to two sequents: 
P k P v P and P v P k P. You may read the example 
as saying 'P therefore P or P, and P or P therefore P'. 
When proving @ -IF y ~ ,  one must give two proofs: one 
for @ k y~ and one for y~ k @. 



Chapter I 

Example. 
Prove P -IF P v P. 

(a) Prove P k P v P. 
1 (1) p 

1 (2) P v P 

(b) Prove P v P k P. 
1 (I)  P v P  
2 (2) -p 

132 (3) p 
1 (4) p 

A 
A 
1,2 v E  
2,3 RAA (2) 

Exercise 1.5.1 Give proofs for the following sequents, using the 
primitive rules of proof. 

Double Negation 
Modus Tollendo Tollens 

MTT 
MTT 
MTT 

Hypothetical Syllogism 
True Consequent 
False Antecedent 

FA 

Impossible Antecedent 
Wedge-Arow (v+) 

v+  
v+ 
v+ 

Simple Dilemma 



P v Q, P + R, Q + S F R v S Complex Dilemma 
P + Q , - P + Q k Q  Special Dilemma 
-(P v Q) -IF -P & -Q DeMorgan's Law 
-(P & Q) -IF -P v -Q DM 
P & Q -IF -(-P v -Q) DM 
P v Q -IF -(-P & -Q) DM 

-(P + Q) - I F  P & -Q Negated Arrow (Neg+) 
-(P + -Q) - I F  P & Q Neg+ 
P +  Q - I F  -(P& -Q) Neg+ 
P +  -Q - I F  -(P& Q) Neg+ 
P & Q - I F Q & P  & Commutativity 
P v Q - I k Q v P  v Commutativity 

P - Q - I F Q e P  e Commutativity 
P + Q - I F - Q + - P  Transposition 
P & ( Q & R ) - I k ( P & Q ) & R  & Associativity 
P v (Q v R) -IF (P v Q) v R v Associativity 
P & (Q v R) -IF (P & Q) v (P & R) &/v Distribution 
P v (Q & R) -IF (P v Q) & (P v R) v/& Distribution 
P + ( Q + R ) - I k P & Q + R  Imp/Exportation 

P - Q , P F Q  Biconditional Ponens 
P w Q , Q F P  BP 
P-Q,-Pk-Q Biconditional Tollens 
P-Q,-QF-P BT 
P - Q - I F - Q H - P  BiTransposition 
P w - Q - I F - P w Q  BiTrans 

-(P H Q) -IF P e -Q Negated H 

-(P w Q) -IF -P w Q Negw 
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Exercise 1.5.2 Give proofs for the following sequents using the 
primitive rules of proof. 

P - Q - i F ( P & Q ) v ( - P & - Q )  
P + Q & R , R v - Q + S & T , T w U F P + U  
( - P v Q ) & R , Q + S F P + ( R + S )  
Q & R , Q + P v S , - ( S & R ) k P  
P + R & Q , S + - R v - Q F S & P + T  

R  & P, R  + (S v  Q), -(Q & P) k  S  
P&Q,R&-S ,Q+(P+T) ,T+@+SvW)FW 
R  + -P, Q, Q  + (P v -S) k  S  + -R 
P  + Q, P  + R, P  + S, T + (U + (-V + -S)), 

Q + T , R + ( W + U ) , V + - W , W t - P  
P w - Q & S , P & ( - T + - S ) F - Q & T  
P v Q w P & Q k P w Q  

substitution Definit ion.  ASUBSTITUTIONINSTANCEofa 
instance sequent is the result of uniformly replacing its 

sentence letters with wffs. 

Comment. This definition states that each occurrence 
of a given sentence letter must be replaced with the 
same wff throughout the sequent. 

Example. 
The sequent 

P v Q F - P + Q  
has as a substitution instance the sequent 

(R & S) v  Q  k  -(R & S) + Q  
according to the substitution pattern 

P/(R & S); Q/Q. 



Comment. The given substitution pattern shows that 
the sentence letter P was replaced throughout the 
original sequent by the wff (R & S), and the sentence 
letter Q was replaced throughout by itself. 

Exercise 1.5.3 Identify each of the following with a sequent in 
exercise 1.5.1 and identify the substitution pattern. 

i * 
ii* 
iii* 

iv* 
v* 
vi* 
vii* 
viii* 
ix* 
x * 

R + S - I t - S + - R  
- P + Q v R , Q v R + S t - P + S  
(P & Q) v R  -It R v (P & Q) 

(PvQ) & ( -Rv-S)i t ( (PvQ) & -R) v ((PvQ)&-S) 
R v S i k  --(R v S) 
(P v R )  & S - I F  -(P V R  + -S) 
P v ( Q v R ) i t - P + Q v R  
-(P & Q) t R + -(P & Q) 
-((P & Q) v (R & S)) - I F  -(P & Q) & -(R & S) 
P v ( R v S ) , P + Q & R , R v S + Q & R F Q & R  

derived rule Comment. Any sequent that one has proved using only 
the primitive rules may subsequently be used as a 
DERIVED RULE of proof if 

(i) some sentences appearing in the proof are the 
premises of the sequent, or 

(ii) some sentences appearing in the proof are the 
premises of a substitution instance of the sequent. 

In case (i) the conclusion of the sequent may be 
asserted on the current line; in case (ii) the conclusion 
of the substitution instance may be asserted. 



Annotation: The line numbers of the premises fol- 
lowed by S#, where S# is the num- 
ber from the book, or the name of 
the sequent (see comment below). 

Assumption set: The union of the assumption sets of 
the premises. 

Comment. All of the sequents in exercise 1.5.1 (S 1 1- 
S52) are used so frequently as rules of proof that they 
have the names we have indicated. (Indeed, in some 
systems of logic some of our derived rules are given as 
primitive rules.) 

Examples. 
(a) Prove R v S + T, -T k -R. 
1 (I)  R v S + T  A 
2 (2) -T A 

1,2 (3) -(R v S) 1,2 MTT 

1,2 (4) -R & -S 3 DM 
1,2 (5) -R 4 &E 

(b) ProveP v R +  S , T +  -S F T +  -(PvR).  
1 (I)  P v R + S  A 
2 (2) T + - S  A 

1 (3) - S + - ( P v R )  1 Trans 

1,2 (4) T + - ( P v R )  2,3 HS 



Comment. Requiring that the sequent to be used as a derived rule 

has been proved using only primitive rules is unnecessarily restric- 

tive. If the sequents are proved in a strict order and no later sequent 

in the series is used in the proof of an earlier sequent, then no 

logical errors can result. We suggest the stronger restriction only 

because it is good practice to construct proofs using only the 

primitive rules. 

Exercise 1.5.4 Prove the following using either primitive or derived 
rules from the previous exercises. If you like a 
challenge, prove them again using primitive rules only. 

- P + P - I k P  
P H  Q i k  -((P + Q) + -(Q +P)) 
P - Q - I k P v Q + P & Q  
P - Q - I F  -(P v Q) v -(-P v -Q) 
P H Q i k  -(P & Q) + -(P v Q) 
P H Q i k  -(-(P & Q) & -(-P & -Q)) 
P v Q + R & - P , Q v R , - R k C  
-P-Q,P+R, -RE-Q-R 
-((P e -Q) H R), S + P & (Q & T), 

R v ( P & S ) k S & K + R & Q  
(P & Q) v (R v S) k ((P & Q) v R) v S 
P &  (-Q&-R), P+(-S +T), -S + ( T H R v Q )  k S 

P & -Q +-R (-S + -P) H -R k R e Q & (P & -S) 
P v Q , ( Q + R ) & ( - P v S ) , Q & R + T k T v S  
P + QvR (-Q&S) v(T+-P), -(-R + -P) k -T & Q 
P v Q , P + ( R + - S ) , ( - R - T ) + - P k S & T + Q  
(PH-Q) + -R, (-P&S) v (Q&T), SVT + R k Q + P 
-S v (S & R), (S + R) + P k P 
Pv(RvQ), (R+S) & (Q+T), S v T + P v Q, -P k Q 
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S82" ( P + Q ) + R , S + ( - Q + T ) k R v - T + ( S + R )  
S83" P & Q + R v S k ( P + R ) v ( Q + S )  
S 84" (P+Q & (R + P), (PvR) & -(Q&R) k (P&Q & -R 
S85" P & Q + ( R v S ) & - ( R & S ) , R & Q + S ,  

S + ((R & Q) v (-R & -Q)) v -P k P + -Q 
S86 -(P&-Q)v-(-R&-S), -S&-Q, T+(-S+ -R&P) k -T 

1.6 Theorems 

theorem Definition. A THEOREM is a sentence that can be 
proved from the empty set of premises. 

Comment. We can assert that a given sentence is a 
theorem by presenting it as the conclusion of a sequent 
with nothing to the left of the turnstile. 

Example. 
Prove k P & Q + Q & P. 
1 (1) P & Q  A 
1 (2) Q 1 &E 
1 (3) p 1 &E 
1 (4) Q & P  2,3 &I 

( 5 )  P & Q + Q & P  4 +I (1) 

Comment .  Note  that in step 5 we d i scharge  as- 
sumption 1. Hence, the final conclusion rests on no 
assumptions. 
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Exercise 1.6.1 Prove the following theorems, (i) using primitive rules 
only and (ii) using primitive rules together with 
derived rules established in a previous exercise. 

TI" 
T2" 
T3 
T4" 
T5" 
T6 
T7 
T8" 
T9" 
TlO" 
T l l "  
T12" 
T13" 
T14" 
T15 
T16 
T17" 
TI8 
T19" 
T20 
T21" 
T22 
T23 
T24 
T25 
T26 
T27" 

F P + P  Identity 
F P v - P  Excluded Middle 
k  -(P & -P) Non-Contradiction 
k P + ( Q + P )  Weakening 
F  (P + Q) v  (Q +P) Paradox of Material Implication 
kP---P Double Negation 

k  (P H Q) - (Q - P) 
k  -(P H Q) H (-P H Q) 
F  ((P + Q) + P) + P  Peirce's Law 

F (P + Q) v  (Q + R) 
F ( P t , Q ) - ( - P w - Q )  
F ( - P + Q ) & ( R + Q ) - ( P + R ) + Q  
F P t , P & P  & Idempotence 
~ P H P v P  v  Idempotence 
k  (P H Q) & (R e S) + ((P + R) t, (Q + S)) 
k ( P H Q ) & ( R U S ) + ( P & R W Q & S )  
k ( P e Q ) & ( R e s ) + ( P v R ~ Q v s )  
k (P H Q) & (R t, S) + ((P t, R) t, (Q e S)) 

F  (P-Q +@+PI -(R+Q)) &((P+R) -(Q+R)) 
F ( P - Q ) + ( R & P - R & Q )  
F ( P t , Q ) + ( R v P - R v Q )  

(P @ Q)  + ((R f3 P) - (R - Q)) 
F P & ( Q - R ) + ( P & Q - R )  
F  P  + (Q + R) w ((P + Q) + (P + R)) 
k P + ( Q + R ) t , Q + ( P + R )  
k P + ( P + Q ) t , P + Q  
k ( P + Q ) + Q - ( Q + P ) + P  



k P + - Q - Q + - P  
k - P + P - P  
k  (P & Q) V (R & S) H 

((P v  R) & (P v  S)) & ((Q v  R) & (Q v  S)) 
k  (P v  Q) & (R v  S) - 

((P & R) v  (P & S)) v  ((Q & R) v  (Q & S)) 
k  (P + Q) & (R + S) w 

((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) 
~ ( P v - P ) & Q w Q  

k ( P & - P ) v Q w Q  
k P v ( - P & Q ) - P v Q  
k P & ( - P v Q ) - P & Q  

k P - P v ( P & Q )  
F P w P & ( P v Q )  
k ( P + Q & R ) + ( P & Q - P & R )  

theorems as Comment. We now consider a special case of the use 
derived rules of sequents as derived rules. Since it is the conclusion 

of a sequent without premises, a theorem or a sub- 
stitution instance of a theorem can be written as a line 
of a proof with an empty assumption set. For a theo- 
rem to be used this way, it must have been proved 
already by means of primitive rules alone. The anno- 
tation should be the name of the theorem or T# (the 
theorem's number). 



Example. 
Prove P + Q, -P + Q k Q. 
1 (1) P + Q  A 
2 (2) -P + Q A 

(3) P v -P T2 

1 2  (4) Q 1,2,3 SimDil 

Comment. In the preceding example, the annotation for 
line 3 gives the number of the theorem introduced. 
Since this theorem has a name, the annotation 
'Excluded Middle' would also have been acceptable. 

Comment. As with sequent introductions, requiring that theorems 

first be proved using only primitive rules is unnecessarily 

restrictive. 

Exercise 1.6.2 Using theorems as derived rules, attempt to construct 
alternative proofs of sequents appearing in exercise 
1.5.4. 
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Truth Tables 

2.1 Truth Tables for Sentences 

truth value Definition. Truth and Falsity (abbreviated T and F) are 
TRUTH VALUES. 

truth table Comment. When an argument is valid, its conclusion 
cannot be false when its premises are all true. One way 
to discover whether an argument is valid is to consider 
explicitly all the possible combinations of truth values 
among the premises and the conclusion. In this chapter 

we show how to do this. The idea is to assign truth 
values variously to the sentence letters of the argument 
and see how the premises and the conclusion turn out. 
The following rules, codified in TRUTH TABLES 
(TTs), enable us to do this. 

Comment. For this method to work, it has to be the 

case that the truth values of compound sentences are 
determined by the truth values of the sentence letters 
that appear in them. 

truth- Comment. All the sentential connectives introduced in chapter 1 

functional have the property described in the previous comment. Since the 

connectives truth values of compound sentences containing these connectives 

are functions of the truth values of the component wffs, they are 

known as TRUTH-FUNCTIONAL CONNECTIVES. (Not all 

English connectives are truth-functional.) 



40 Chapter 2 

TT for negation In order for a negation -@ to be true, @ must be false. 

Table 2.1 Truth function for negation. 

TT for In order for a conjunction (@ & y ~ )  to be true, both con- 
conjunction juncts @ and y ~  must be true. 

TT for In order for a disjunction (4 v y ~ )  to be false, both dis- 
disjunction juncts @ and y ~  must be false. 

TT for In order for a conditional (@ + y ~ )  to be false, the ante- 
conditional cedent @ must be true while the consequent y ~  is false. 

TT for In order for a biconditional (@ w y ~ )  to be true, @ and 
biconditional y ~  must have the same truth value. 

Table 2.2 Truth functions for the binary connectives. 



Comment. Observe that if a conditional's antecedent is 
false, then the conditional is true no matter what the 
truth value of its consequent. Also, if its consequent is 
true, then it is true, regardless of the truth value of its 
antecedent. These are the truth table analogues of the 
derived rules False Antecedent and True Consequent. 

TTs for By means of these rules we can construct TTs for com- 
sentences pound wffs, exhibiting how their truth values are deter- 

mined by the truth values of their sentence letters. 

Example. 

Table 2.3 TT for the sentence (P + Q) v (-Q & R). 

P Q R  

T T T  
T T F  
T F T  
T  F  F  
F T T  
F T F  
F F T  
F  F  F  

( P + Q ) v ( - Q & R )  

T  T F F  
T  T F  F  
F  T T  T  
F  F T  F  
T  T F F  
T  T F  F  
T  T T T  
T  T T  F  

(a) ld/ (b! fc! 



Comment. By referring to the columns for P and Q, we 
construct column (a), for (P + Q), using the TT for 
conditionals (see table 2.2). Next, we construct column 
(b), for -Q, (see table 2.1). Column (c), for (-Q & R) 
is constructed by referring to the columns for its 
conjuncts, -Q and R and using the TT for conjunction 
(see table 2.2). Finally, we construct column (d), for 
(P + Q) v (-Q & R), by referring to those for its 
disjuncts, (P + Q) and (-Q & R) (see table 2.2). 

Comment. The column for a given component of a sen- 
tence (other than the sentence letters) is placed under 
that component's connective. For example, the column 
for (P + Q) in table 2.3 falls under its arrow. 

Exercise 2.1 Construct TTs for the following sentences. 

i* 
ii* 
iii* 

iv* 
v* 
vi * 
vii* 
viii* 
ix* 
x * 

P v ( - P v Q )  
-(P & Q) v P 
-(P + Q) + P 

(P v Q) V (-P & Q) 
P v Q + R v - P  
R - - P v ( R & Q )  

(P & Q - Q) + (Q + P) 
(P w -Q) w (-P w -Q) 
(P w Q) - (P v R + (-Q + R)) 
(P & Q) v (R & S) + (P & R) v (Q & S) 

For additional practice, construct TTs for wffs in 
chapter 1. 



2.2 Truth Tables for Sequents 

validity To determine a sequent's validity or invalidity, we con- 
with TTs struct a single TT for the whole sequent. If there is a 

line in the TT where all the premises are true and the 
conclusion is false, then the sequent is invalid. If there 
is no such line. it is valid. 

valid example 

Table 2.4 This sequent is valid since there is no line on 

which -P and Q + (P & Q) are both true but -Q is 

false. 



invalid example 

Table 2.5 This sequent is invalid since tlzere is at least 

one line where -P + Q and (R & P )  + Q are both 

true but the conclusion is fulse-the fourth line. 

P Q R  

T T T  
T T F  
T F T  
T F F  
F T T  
F T F  
F F T  
F F F  

invalidating Definition. An INVALIDATING ASSIGNMENT for 
assignment a sequent is an assignment of truth and falsity to its 

sentence letters that makes the premises true and the 
conclusion false. 

-P+Q, ( R & P ) + Q  k Q  

F  T T  T  
F  T F  T  
F  T T  F  
F  T F  T  
T  T F  T  
T  T F  T  
T  F  F  T  
T  F  F  T  

Comment. From the TT for an invalid sequent, you can 
read off an invalidating assignment. Find a row of the 
TT where the premises are all true and the conclusion 
is false. The invalidating assignment is given at the left 

side of that row. 

Example. 
An invalidating assignment for the sequent in Table 2.5 
assigns truth to P and falsity to Q and R. 
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number Comment. When the sequent in question involves only 
of lines two sentence letters, the TT has exactly four lines; 

three sentence letters requires eight lines. In general, 
when n sentence letters are present, the number of 
lines in the TT is 2n. 

incompatible Comment. Consider this special case:If you construct a 
premises TT for the sequent P + Q, Q + R, P & -R k S you 

find that there is no line on which all the premises are 

true. Consequently, there is no line on which the 
conclusion is false while all the premises are true. Thus 
the sequent is valid. 

Exercise 2.2 Use TTs to determine whether each of the following 
sequents is valid. For each invalid one, find an in- 
validating assignment. For each valid one, give a proof. 

i * 
ii* 
iii* 

iv* 
v* 
vi * 
vii* 
viii* 

ix* 
x * 
xi* 
xii* 
xiii* 
xiv* 



xv* 
xvi * 
xvii * 

xviii* 

-R+-Q,( -P&R)+-Qk-(P- -R&Q) 
S + v e P ) ,  Q+(-Se-T), -@'&R-T+S)k R & -Q 
Q + ( P + R & - Q ) , - Q + - ( T v V ) , U & S - P  

k (S + -U) v -T 
Q v R + U &T, -(P e Q), -(S v W) + P 

k Q v V + ( S & U ) v ( T & W )  

2.3 Tautologies 

no premises Comment. Another special case is a valid sequent 
without premises. In this case, validity requires that 
there be no lines of the TT on which the conclusion is 
false, since no premises are present to be considered. 

Table 2.6 A valid sequent without premises. 



Table 2.7 An invalid sequent without premises. 

P Q R  

T T T  
T T F  
T F T  
T F F  
F T T  
F T F  
F F T  
F F F  

tau tology Definition. A sentence @ is a TAUTOLOGY (or, is 
TAUTOLOGOUS) when the sequent that has no pre- 
mises and has @ as its conclusion is valid. 

(P -Q) - t (Pv -R)  

T  T  T F  
T  T  T T  
F T  T F  
F  T  T T  
F  T  F F  
F  T  T T  
T  F  F F  
T  T T T  

Comment. When a sentence is a tautology, it cannot be 
false: its TT has only Ts in the column for the 
sentence. Some sentences have only Fs appearing in 
their column of a TT; others have both Ts and Fs. The 
sentence appearing in table 2.6 is a tautology. 

inconsistent Definition. A sentence that has only Fs in its column of 
and a TT is INCONSISTENT. A sentence that is neither 
contingent tautologous nor inconsistent is CONTINGENT. 
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Comment. The sentence appearing in table 2.7 is con- 
tingent. 

Table 2.8 P is contingent, P & -P is inconsistent, 

and P v -P is tautologous. 

Table 2.9 ((P + Q) + P) + P is tautologous. 

P Q 

T T 
T F 
F T 
F F 

((P 3 Q) 3 P) 3 P 

T T T 
F T T 
T F T 
T F T 



Table 2.10 (P  & Q) w (-P v -Q) is inconsistent. 

Exercise 2.3 Use TTs to establish that all the theorems considered 

in chapter 1 are tautologies. 

2.4 Indirect TTs 

indirect TT Comment. TTs provide a way to search systematically 
for invalidating assignments. A shorter way of doing 
this is the indirect truth table (ITT). 

In an ITT, one attempts to build invalidating assign- 
ments. When the sequent is valid, it is impossible to 
build an invalidating assignment (as in the first ex- 
ample below). 



In cases of invalid arguments, an invalidating assign- 
ment can be discovered (as in the second example 
below). Sometimes one must examine more than one 
assignment (as in the third example below). 

easy valid case Example. 

Consider the sequent 
P + Q, -R + -Q k -R + -P 

There is only way for the conclusion (-R + -P) to be 
false: -R must be true and -P false. That is, R must be 
false and P must be true. as shown below. 

Having established these truth assignments, we now 
see if there is any way of making the premises all true 
that is compatible with this assignment. In other words, 
we need a value of Q to complete the following: 
P + Q, -R + -Q k -R + -P 
T T TF T TF F FT 

The assignment indicated requires Q to be true, in 
order for the first premise to be true, but also requires 
-Q to be true (hence Q to be false), in order for the 
second premise to be true. This is the only way to 
make both premises true and the conclusion false, and 
it is impossible to achieve. Thus, there are no 
invalidating assignments, and the argument is valid. 



easy Example. 
invalid case The sequent below has a conditional conclusion. Thus, 

if the conclusion is to be false, its antecedent must be 
true and its consequent false. 

P & -Q, Q + R  k P + R  
T T T F  F T F  T F F  

The invalidating assignment assigns T to P and F to Q 

and R. 

harder case Example. 

In the sequent below there are three ways to make the 
conclusion false. Here is one of them: 

-P + Q, -P + -Q k P & Q  
F F T  

On this assignment, the second premise is false. Thus, 
we have failed to find an invalidating assignment. So 
we try a different way of making P & Q false: 

-P + Q, -P + -Q k P & Q  
FT FT T F F  

Here, both premises are true, since they both have false 
antecedents. Thus, an invalidating assignment assigns 
T to P and F to Q. 
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Exercise 2.4.1 Use ITTs to determine whether the sequents given in 
exercise 2.2 are valid or invalid. 

Exercise 2.4.2 Use ITTs to determine whether the following sequents 
are valid. For each invalid one, give an invalidating 
assignment. For each valid one, construct a proof. 

i* 

ii* 
iii* 
iv* 
v* 

vi * 
vii* 

viii* 
ix* 
x * 
xi* 
xii* 
xiii* 
xiv* 
xv* 
xvi * 
xvii* 
xviii* 

xix* 
xx* 

P + Q , Q F P  

P v Q , P k Q  
P + Q , - Q + R k P + R  
P v - Q , - Q & R t P & R  
P - Q v R , - Q t - P  

P + Q , ( R + S ) + - P t Q v R  
P + Q v R , Q + S & T , - S k - P  

P & - Q + R , P - - R t ( Q & R ) v P  
P + Q & - R , - P v Q w S k S + - P v T  
-(P w Q), P  + R, Q  + S  k  -R v  S  

S + Q , - S + Q v T , T + P k P + Q v R  
- Q + S , S + Q v - T , - T + P t Q + P v R  

P  + (-Q + -R & -S), -(R e S), -Q k  -P 
P  v  Q, -(R + P) k  Q  e (-T + -R v  S) 
P & S + R , R v T , T + Q & P , - Q v U k P + S v U  
-(P H Q), P  + R, Q  + S  k  -R v  S  
- ( P + - Q & R ) , - R w - P k P & Q  

(P + Q) & (-Q + P  & R) + (S v  T  + -Q) 
t Q  + -(-S + T) 

k  (P v -Q + -P & -Q) w -P 

Q w - Q k P w - P  



2.5 English Counterexamples 

counter- Definition. An English COUNTEREXAMPLE for an 
example invalid argument or sequent is an argument that has the 

same logical form as the original, but whose premises 
are all obviously true and whose conclusion is 
obviously false. 

Example. 
A counterexample for P + Q, Q k P is 

If Los Angeles is in Canada, then Los Angeles is in 
North America. 
Los Angeles is in North America. 
Therefore, Los Angeles is in Canada. 

Comment. The relationships of Los Angeles, Canada, 
and North America to one another are public knowl- 
edge. The premises are both obviously true, and the 
conclusion is obviously false. 

Comment. In constructing a counterexample, it is not 
generally useful to construct the premises and the 
conclusion using either unspecific pronouns or 
personal information. For example, given the invalid 
sequent above, one might present 

If it is raining then there are clouds in the sky 
There are clouds in the sky. 
Therefore, it is raining. 



Although one can see in a hypothetical situation that 
the premises might be true at the same time as the 
conclusion is false, the trouble with this argument as a 
counterexample is that the second premise is not 
obviously true (you may not be in a position to deter- 
mine whether there are clouds in the sky) and likewise 
the conclusion is not obviously false. 

Similarly, the following is not useful: 

If my cousin is intelligent, she will pass logic. 
My cousin will pass logic. 
Therefore, my cousin is intelligent. 

Since it is not general knowledge who your cousin is 
and whether or not she is intelligent or will pass logic, 
this does not provide a clear counterexample to the 
given sequent. 

Exercise 2.5.1 Construct counterexamples for the invalid sequents in 
chapter 2. 

Exercise 2.5.2 Give proofs, invalidating assignments, or counter- 
examples to establish the validity or the invalidity of 
the following sequents: 



iv 
v 
vi 
vii 
. . . 

V l l l  

ix 
X 

xi 
xii 
. . . 

X l l l  

xiv 
xv 
xvi 

xvii 
xviii 
xix 
XX 

xxi 
xxii 
xxiii 

xxiv 
xxv 

( Q + P ) + R , - Q v S , - S k - R + T  
P & ( Q + R ) , Q v - P , R v S + T k T v U  
P H - Q , R v - Q , R w S k S v P  
P H Q , Q w - R , R + P k - P H - R  
P H Q k ( R W P ) H ( P H Q )  
- R w - Q , P v - Q , P w S k S v - R  

R w - Q , P v - Q , P w S k S & R  
(P + Q) v  (R + S) k  (P + S) v (R + Q) 

(P + Q) & (R + S) k  (P + S) & (R + Q) 
P  & Q, Q+(F+P), R  + (-S+-Tv-W), -S & T  k  W  
P&Q, Q  +(P+R), R  + (-S+-Tv-W), -S & T  k  -W 
P v Q  +RvS, -(TvR) + S, (T +P) &(R+Q),-S k  R  
-(P v -Q), -P + R  v S, -S v -Q, 

R v - T + W & ( Y + - Q ) k - ( W + Y )  
Pv(QvR),S&-T,-(-SvT)+-P,(R+W)&-WkQ 
P v ( Q v R ) , S & - T , ( R + W ) & - W k Q  
( P w Q ) w ( - P w - R ) k P + ( Q w R )  
P  w Q, -(-R & P), R  v S  + -(T & Q) k  T  + +vQ) 
P H Q , R v - P , T & Q + - R k - S & T + - ( P v Q )  
P  & Q  + (R w S), -P + -T, -(-R v S) k Q  + -T 
P & Q + R , P & - R w Q v - S ,  

T  & (-Q & -R +P), (T + S) v  (T + R) k S  & R  
Rv(P+S), T&-W, (-TvW)+-R (S + Q) & -Q k  -P 
Rv(PvS), T&-W, -(-TvW) + -R, (S + Q) &-Q k  P  
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Chapter 3 
Predicate Logic 

3.1 A Formal Language for Predicate Logic 

Comment. Sentential logic allows us to study the 
logical relations among sentences that hold because of 
their structure, insofar as that structure is determined 
by the presence of connectives. But sentential logic 
cannot handle the similarity between 'Kareem is tall' 
and 'Akeem is tall', not to mention 'Someone is 
tall'-these would be represented as P, Q, and R, as if 
they had nothing in common. We now introduce a new 
language that accommodates this further structure. 

vocabulary Definition. The VOCABULARY OF PREDICATE 
LOGIC consists of 

SENTENCE LETTERS, 
CONNECTIVES, 
NAMES, 
VARIABLES, 
PREDICATE LETTERS, 
the IDENTITY SYMBOL, 
QUANTIFIERS, and 
PARENTHESES. 

Sentence letters, connectives, and parentheses are 
adopted from the language of sentential logic. 
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names Definition. A NAME is a symbol from the following 
list: 

a, b, c, d, a', bl,  Cl, dl, a2, b2' .. .. 

variables Definition. A VARIABLE is a symbol from the 
following list: 

u, v, w, x, y, z, ul, V', Wl, XI, Y', Zl, u2, .... 

Comment. Names and variables are used to refer to 
objects in much the same way as names and certain 
kinds of pronouns in English. Section 3.2 deals with 
translation between English and the language defined 
in this section. 

Comment. Where there is no possibility of confusion we shall 

sometimes use lowercase letters other than those listed above as 

names. 

1-place Definition. A 1-PLACE PREDICATE LETTER is 
predicate any symbol from the following list: 
letter A',.. . , z', A:, . .. , z:, . .  . 

2-place A 2-PLACE PREDICATE LETTER is any symbol 
from the following list: 

2 A ~ ,  . . . , Z2, Ao, . . . , z:,. ... 

n-place In general, an n-PLACE PREDICATE LETTER is 
any symbol from the list 

An, . . . , Zn, A:, . . . , Z:, . . . 
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many-place Comment. Predicate letters with more than one place 
are referred to as MANY-PLACE PREDICATE 
LETTERS. Predicate letters will sometimes be 
referred to as 'predicates' for short. 

Comment. In practice the superscripts can and will be 
omitted. Any of the capital letters may appear as 
sentence letters or predicate letters. It is usually 
possible to tell how a letter is being used in a wff by 
looking at the number of names or variables im- 
mediately following it. A capital letter with no names 
or variables is a sentence letter, one followed by one 
name or variable is a 1-place predicate, and so on. 
Also, the letters 'R' and 'S' are sometimes reserved for 
2-place predicates. 

identity Definition. The symbol '=' is the IDENTITY SYM- 
symbol BOL. 

Comment. The identity symbol is used to represent the 
relationship of numerical identity, such as, for 
example, that Mark Twain is identical to (i.e., one and 
the same as) Samuel Langhorne Clemens. 

metavariables Comment. The Greek letters a, P, y, etc. are used as 
METAVARIABLES for the names and variables of 
predicate logic. 
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universal Definition. A UNIVERSAL QUANTIFIER is any 
quantifier symbol of the form 

b'a 
where a is a variable. 

Comment .  Universal quantifiers correspond to the 
English word 'every'. 

existential Definition. An EXISTENTIAL QUANTIFIER is 
quantifier any symbol of the form 

J a  

where a is a variable. 

Comment. Existential quantifiers correspond to the 
English word 'some'. 

expression Definition. An EXPRESSION OF PREDICATE 
LOGIC is any sequence of items from the vocabulary 
of predicate logic. 

wffs Definition. A WELL-FORMED FORMULA of predi- 
cate logic is any expression in accordance with the 
following seven rules: 

(1) Sentence letters are wffs. 

(2) An n-place predicate letter followed by n names is a 
wff. 
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(3) Expressions of the form a=p where a and P are 
names are wffs. 

Comment. Although the placement of the identity 
symbol superficially resembles that of a connective, it 
is in fact a special two-place predicate. For historical 
reasons alone it is placed between a and P rather than 
in front of them. 

atomic [Definit ion.  Wffs  of the form specified in rules 1-3 
sentence are the ATOMIC SENTENCES of predicate logic. 

Those conforming to rule 3 are also known as IDEN- 
TITY STATEMENTS.] 

Comment. We adopt the practice of omitting super- 
scripts from predicate letters. 

(4) Negations, conjunctions, disjunctions, conditionals, 
and biconditionals of wffs are wffs. 

Comment .  The formation rules of chapter 1 are 
subsumed by this clause. 

(5) If @ is a wff, then the result of replacing at least one 
occurrence of a name in @ by a new variable a (i.e., 
a not in @) and prefixing b'a is a wff. 

universal wff [Definition. Such wffs are called UNIVERSALLY 
QUANTIFIED wffs, or UNIVERSAL wffs.] 



(6) If @ is a wff, then the result of replacing at least one 
occurrence of a name in @ by a new variable a (i.e., 
a not in @) and prefixing 3a is a wff. 

existential wff [Definition. Such wffs are called EXISTENTIALLY 
QUANTIFIED wffs, or EXISTENTIAL wffs.] 

(7) Nothing else is a wff. 

Examples. 
Wffs of this language include the following: 

((Fa v Fb) + Gab) 

~ Y F Y  
b'x(Fx + Gx) 
'dx'dy(Rxy + Ryx) 
(3xFx w 'dxGx) 
-3x(Fx H -b'yGy) 
(3xFx + P) 
'dx3yFyxb 
-a=b 
b'x x=x 
b'xb'y(x=y + y=x) 
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Exercise 3.1.1 Which of the following expressions are wffs? If an ex- 
pression is a wff, say whether it is an atomic sentence, 
a negation, a conditional, a conjunction, a disjunction, 
a biconditional, a universal, or an existential. (Note: 
Any wff must fall into exactly one of these categories.) 

i * 
ii* 

iii* 
iv * 
v* 
vi * 
vii* 
viii* 

ix * 
x * 
xi* 
xii* 
xiii* 
xiv* 
xv* 
xvi * 
xvii * 
xviii* 
xix* 

xx* 
xxi* 
xxii* 
xxiii* 
xxiv* 
xxv* 

Fz 
VxGac 

VxGcax 
3xVy(Gxy & Gyx) 
Vx(Gxy H 3yHy) 
3x(Ax + VxFxx) 

VxVy(Fxy + Vz(Hxyz & Jz)) 
VxFxx w VxVyFxy 

-Vx-3z(Hz v Jx) 
Ga + Vx-(Ha v Fxx) 

P + Gab 
-(P & -3xFx) 
Vx(Fx) & P 

~ ~ ( F Y Y Y  & P) 
Vxyz(Fzx w Hxyz) 
b=b 
(a=a) 
P=c 
Fa=Fa 

Vz(Fz + a=b) 
Vx(x=x) 
3x(Fx=Gx) 
-Vx(Fx & 3y x=y) 
(-a=b e -Vx(Fxa & Fbx)) 
Vx3y(-x=y + y=-x) 



quantifier Comment. When a wff contains an uninterrupted se- 
convention quence of quantifiers of the same type, existential or 

universal, it is often convenient to omit repetitions of 3 
or V. 

Examples. 
The expression 

Vxyz(Fxy & Gyz w Hzx) 
will be read as shorthand for 

VxVyVz(Fxy & Gyz H Hzx). 

The expression 
3xyVzw(Fxyz & Gwx + -Hzx) 

is to be read as 
3~3yVzVw(Fxyz & Gwx + -Hzx). 

non-identity We introduce the special symbol # that may be used to 
abbreviate statements of the form -a = P thus: a # P. 
It will be useful to bear in mind that sentences of this 
form are negations, not atomic. 

Comment. As with the parenthesis-dropping conven- 
tions introduced in chapter 1,  the formulas allowed by 
the conventions here are not strictly well-formed. They 
are merely acceptable abbreviations for wffs. 
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open formula Definition. An OPEN FORMULA is the result of 
replacing at least one occurrence of a name in a wff by 
a new variable (one not already occurring in the wff). 

Comment. Open formulas are not wffs and hence never 
appear as sentences in proofs. The notion of an open 
formula is used to present the rules of proof for 
predicate logic. 

Examples. 
Fx is an open formula. 
It occurs as part of the wff VxFx. 

Fxy is an open formula. 
It occurs as part of the open formula 3yFxy, which in 
turn is part of the wff Vx3yFxy. 

scope Definition. The SCOPE of a quantifier in a given 
formula is the shortest open formula to the right of the 
quantifier. 

Examples. 
In the wff 

('dxFx & 3y(Fy + Gy)), 
the scope of 'dx is the expression 

Fx 
and the scope of 3y is the expression 

(FY + GY). 



In the wff 
3y(Fy & b'z(Gz v -Rzy)), 

the scope of 3y is 
(Fy & b'z(Gz v -Rzy)), 

but the scope of b'z is 
(Gz v -Rzy). 

wider and Definition. A quantifier whose scope contains another 
narrower other quantifier is said to have WIDER SCOPE than 
scope the second. The second is said to have NARROWER 

SCOPE than the first. 

bound Definition. A variable, a ,  that is in the scope of a 
variable quantifier for that variable (i.e. b'a or 3a) is called a 

BOUND VARIABLE. A variable that is not bound by 
a quantifier is said to be UNBOUND or FREE. 

Exercise 3.1.2" Identify all the open formulas appearing in exercise 
3.1. If an open formula appears in an expression that is 
not well-formed, give an example of a wff in which it 
might appear. 

Exercise 3.1.3 In the following sentences, determine the scopes of all 
quantifiers. 



. . . 
111 

iv 
v 
vi 
vii 
. . . 

Vl l l  

ix 
X 

VxPx + Vz-VxRxz 
Vz(Px + VxRxz) 
Vx3yFyxb 
3y(Fy & Vz(Gz v -Rzy)) 
VxVy(Fxy + Vz(Hxyz & Jz)) 
VxVy(Rxy + Ryx) 
3z3x(Fxz + VyGyxa) 
3x(x=a + VyGyaa) 

3.2 Translation of English to Quantified Wffs 

translation Definition. A translation scheme for the language of 

scheme predicate logic consists of a pairing of predicate letters 
with English predicate phrases and of names of 
predicate logic with names in English. We also include 
metavariables with the predicates and associated 
phrases to indicate the appropriate order for names and 
variables. 

Example. 
According to the translation scheme 

Lab: a likes P 
a: Abigail, 

the sentence 
'Abigail likes everything' 

is translated as 
VxLax. 



Comment. It is possible to give several non-equivalent 
translation schemes for sentences of English, depend- 
ing on how many places are assigned to the predicates. 

Example. 
Using the translation scheme 

Fa: a is the father of Mary 
a: John, 

F is specified as a 1-place predicate. Using this 
scheme, the sentence 

John is Mary's father 
is translated as 

Fa. 

Using the translation scheme 
FaP: a is the father of P 
a: John 
b: Mary, 

F is specified as a 2-place predicate with the first 
position (occupied by a )  corresponding to the subject 
of the phrase 'is the father of' and the second (occu- 
pied by P) corresponding to its object. Using this 
scheme, the sentence 

John is Mary's father 
is translated as 

Fab. 



Comment. The choice of whether to represent English 
phrases with one-place or many-place predicates is 
dependent on the degree of structure that must be 
included in order for an argument to be analyzed 
adequately. In general, more detail is better than less 
detail, since arguments may be labeled invalid 
erroneously if insufficient detail is represented. 

Comment. The logical forms of many English sen- 
tences can be captured with the quantifiers introduced 
in section 3.1. The following is an incomplete list of 
some of the more common sentences. 

universals Variants whose logical form is 
VxFx 

include the following: 
Everything is F. 
All things are F. 

Variants whose logical form is 
Vx(Fx + Gx) 

include the following: 
Every F is a G. 
All Fs are Gs. 
If it's an F, it's a G. 
Everything that is F is G. 
Anything that is an F is a G. 
Any F is G. 
If something is an F, it is a G. 
Only Gs are Fs. 



There are several variants having the form 
b'x(Fx + -Gx) 

including these: 
No Fs are Gs. 
Not a single F is G. 
Fs are never Gs. 
Every F is not G. 

existentials Variants with the form 
3xFx 

include the following: 
Something is F. 

There exists an F. 
There is at least one F. 

Variants having the form 
3x(Fx & Gx) 

include the following: 
Some Fs are Gs. 
At least one F is G. 
There exists an F that is G. 

Comment. Notice the difference between translating 
'Every F is G' (equivalently 'All Fs are Gs') and 
'Some Fs are G'. In the first case, an arrow is used in 
the scope of a universal quantifier. In the second, an 
ampersand is the appropriate connective in the scope 
of the existential quantifier. 



Comment. When translating sentences of English 
without the use of the identity symbol, the distinction 
between 'Some F is G' ('At least one F is G') and 
'Some Fs are G' ('At least two Fs are G') cannot be 
represented. We comment on the translation of 'at least 
n' below. 

identity Variants with the form 
a=P 

include the following: 
a is p. 
a is (numerically) identical to P. 
a is the same (entity) as p. 
a and p are one and the same. 
a is the very same individual as P. 

quantities Numerical quantities can be expressed using the quanti- 
fiers in conjunction with the identity symbol. 

at least n The existential quantifier expresses 'at least one'. 
Other numerical quantities can be expressed by assert- 
ing the existence of non-identical objects. Thus, for 
example: 

3xy x+y At least two 
3xyz((x+y & x+z) & y#z) At least three 

The sentence 'There are at least two dogs' may be 
translated 3x3y((Dx & Dy) & x+y). 
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exactly n There are exactly n objects if there are at least n, and 
all objects are identical to one or other of those n. For 
example: 

3xVy x=y Exactly one 
3xy(x#y & Vz(z=x v z=y)) Exactly two 
3xyz(((x+y & X#Z) & yfz) 
& b'w((w=x v w=y) v w=z)) Exactly three 

at most n There are at most n objects if there are exactly zero, or 
exactly one, etc., up to exactly n objects. For example, 
'There are at most two dogs' may be translated as: 
-3xDx v (3x(Dx & Vy(Dy + y=x)) v 

3xy(((Dx & Dy) & x#y) & Vz(Dz + z=x v z=y)) 
This is equivalent to saying that there are not three 
distinct dogs, i.e.: 
-3xyz((Dx & (Dy & Dz)) & (xfy & (x#z & y#z))) 

Comment. There are many subtleties in the translation 
of English quantifier phrases into the language of 
predicate logic. Such phrases often introduce ambi- 
guity into the expressions of English. The exercises 
below illustrate some of the subtleties and ambiguities. 
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Exercise 3.2 Give translation schemes and translate the following 
sentences of English into the language of predicate 
logic. If a sentence is ambiguous, give all the reason- 
able translations of it. 

(1-22: Translate using one-place predicates only.) 
I*  All dogs are mammals. 
2" Some sharks are ovoviviparous. 
3" No fishes are endothermic. 
4" Not all fishes are pelagic. 
5" Reptiles and amphibians are not endothermic. 

6" Some primates and rodents are arboreal. 

7" Only lagomorphs gnaw. 
8" Among spiders, only tarantulas and black widows are 

poisonous. 
9" All and only marsupials have pouches. 

10" No fish have wings unless they belong to the family 

Exocoetidae. 
11" Some organisms are chordates and some organisms are 

molluscs, but nothing is both a chordate and a mollusc. 
12" None but phylogenists are intelligent. 
13" Animals behave normally if not watched. 

14" Animals behave normally only if not watched. 

15" Some sharks are pelagic fish, but not all pelagic fish 

are sharks. 
16" If Shamu is a whale and all whales are mammals, then 

Shamu is a mammal. 
17" No sparrow builds a nest unless it has a mate. 

18" No organism that is edentulous is a predator. 

19" All predators are not herbivorous. 

20" Not all predators are carnivorous. 



21" A mammal with wings is a bat. 

22" A mammal with wings is flying. 

(23-29: Try these first with one-place predicates, then with many- 
place predicates.) 
23" Shamu can do every trick. 

24" Shamu can do any trick. 

25" Shamu cannot do every trick. 

26" Shamu cannot do any trick. 

27" If any whale can do a trick, Shamu can. 

28" If every whale can do a trick, Shamu can. 

29" If any whale can do a trick, any whale can do a trick. 

(30-57: Translations with many-place predicates.) 
30" Godzilla ate Bambi. 
31" Something ate Bambi. 
32" Godzilla ate something. 
33" Bambi ate everything. 
34" Everything ate Bambi. 
35" Something ate something. 
36" Something ate everything. 
37" Everything ate something. 
38" Everything ate everything. 
39" Everything ate itself. 
40" Something ate itself. 
41" Nothing ate itself. 
42" Something ate nothing. 
43" Everyone said something to everyone. 

44" Everyone said something to someone. 

45" Everyone said nothing to someone. 

46" No one said anything to anyone. 

47" There is a reptile smaller than a cat but larger than a 

dog. 



48" Some fishes swim slower than humans. 

49" Some fishes are smaller than every mammal. 

50" Some whales eat only fast-moving fishes. 

51" Some whales do not eat any fast-moving fishes. 

52" If anything eats fast-moving fishes, sharks do. 

53" Jaguars' tails are longer than ocelots' tails. 

54" If an organism is symbiotic with a clown fish then it is 
a sea anemone. 

55" The phalanges of birds are homologous to the phalan- 
ges of humans whereas the eyes of octopi are analo- 
gous but not homologous to the eyes of mammals and 
birds. 

56" Some whales eat more than all fishes. 

57" There is a monkey who grooms all and only those 
monkeys who do not groom themselves. 

(Translations involving the identity symbol.) 
58" Exactly one cheetah exists. 
59" There is only one Paris. 
60" Bambi ate at least two trees. 

61" Bambi ate everything except himself. 

62" Every dog has exactly one tail. 
63 Godzilla ate Bambi, and something else ate Godzilla. 

64 Bambi was not eaten by Godzilla but by something 

else. 
65 Godzilla ate nothing but Bambi. 

66 Godzilla ate everything except Bambi. 

67 Only Bambi is afraid of Godzilla. 

68 Nothing but Godzilla likes Bambi. 

69 There is a fish that's bigger than all the others. 

70 Nobody likes somebody who eats everything except 

Bambi. 



3.3 Primitive Rules of Proof 

Comment. We introduce six new primitive rules of 
proof: universal elimination, universal introduction, 
existential introduction, existential elimination, iden- 
tity introduction, and identity elimination. To allow 

succinct statements of the first four of these, the 
notions of universalization, existentialization, and 
instance are defined. 

universa- Definition. A UNIVERSALIZATION of a sentence 
lization with respect to a given name occurring in the sentence 

is obtained by the following two steps: 

( I )  Replace all occurrences of the name in the sentence by 
a variable a ,  where a does not already occur in the 
sentence. 

(2) Prefix V a  to the open formula resulting from step 1. 

Examples. 
Universalizations of 

(Fa + Ga) 

include 
Vx(Fx + Gx) 

and Vy(Fy + Gy). 



Universalizations of 
Faa 

include 
VxFxx 

and VyFyy. 

existentia- Definition. An EXISTENTIALIZATION of a sen- 
lization tence with respect to a given name occurring in the 

sentence is obtained by the following two steps: 

(1) Replace at least one occurrence of the name in the sen- 
tence by a variable a, where a does not already occur 
in the sentence. 

(2) Prefix 3a to the open formula resulting from step 1. 

Comment. Notice the difference between step 1 in the 
definition of universalization and step 1 in the 
definition of existentialization. Universalization re- 
quires replacement of all occurrences of the name by 
with a .  

Examples. 
Existentializations of 

(Fa + Ga) 
include 

3x(Fx + Gx), 
3x(Fa + Gx), 

and 3y(Fy + Ga). 



Existentializations of 
Faa 

include 
3xFxx, 
3xFax, 

and 3yFya. 

instance Definition. An INSTANCE of a universally or exis- 
tentially quantified sentence is the result of the follow- 
ing two steps: 

(I) Remove the initial quantifier. 

(2) In the open formula resulting from step 1,  uni- 
formly replace all occurrences of the unbound 
variable by a name. 

Comment. This is called INSTANTIATING the sen- 
tence. The name is called the INSTANTIAL NAME. 

Examples. 
The sentence 

VxFx 
has instances 

Fa, Fb, Fc, etc. 

The sentence 
3x(Fx & Gx) 

has instances 
(Fa & Ga), (Fb & Gb), (Fc & Gc), etc. 



The sentence 
3xVy(Fxy + Gy) 

has instances 
Vy(Fay + Gy), Vy(Fby + Gy), etc. 

Exercise 3.3.1" Pair wffs and their instances from the list of sentences 
below. Some formulas may appear in several pairs. 
Others may appear in none. 

i 
. . 
11 
. . . 
111 

iv 
v 
vi 
vii 
. . . 

V l l l  

ix 
X 

VxFax 
3x(Fxa & VyGyxa) 
3xFax 
Fab 
3yVxFyx 
3zx(Fxz & VyGyxa) 
Vxy Fxy 
VxFxa 
3zx(Fxz & VyGyxz) 
Fba & VyGyba 

Comment. The primitive rules of proof for predicate 
logic include all the primitive rules from chapter 1. 
There are also introduction and elimination rules for 
the two quantifiers and for the identity symbol. Two of 
the new rules have conditions that must be met for the 
application of the rules to be correct. 



universal-elim Given a universally quantified sentence (at line m), 

conclude any instance of it. 

Condition: None. 
Annotation: m VE 
Assumption set: same as line m. 
Also known as: Universal Instantiation. 

Examples. 

(a) 
1 ( I )  VxFx 

1 (2) Fa 
1 (3 )  Fb 

(b) 
1 (1) YYRYY A 
1 (2) Rbb 1 VE 

universal- Given a sentence (at line m) containing at least one 
intro occurrence of a name, conclude a universalization of 

the sentence with respect to that name. 

Condition: The name in question must not 
occur in any assumpt ions  in m's 
assumption set. 

Annotation: m VI 
Assumption-set: same as line m. 
Also known as: Universal Generalization. 



wrong! 

Examples. 

(a) 
1 (1) VxFx 
1 (2) Fb 
1 (3) VxFx 
1 (4) VYFY 

(b) 
1 (1 ) Vx(Fx + Gx) A 
1 (2) Fa + Ga 1 VE 
3 (3) VxFx A 
3 (4) Fa 3 VE 
1,3 (5) Ga 2,4 +E 
1,3 (6) VxGx 5 VI 

Example of violation of the VI condition. 

(c) 
1 (1 ) Vx(Fx + Gx) A 

2 (2) Fa A 

1 (3) Fa + Ga 1 VE 

1,2 (4) Ga 2,3 +E 

1,2 (5) VxGx 4 VI 

Comment. Ordinarily we cannot conclude VxFx 
merely from Fa-the fact that one thing is F doesn't 
guarantee that everything is F! The condition on VI 
ensures that we do not make this mistake. If the 
sentence Fa is true, and furthermore would still be true 

no matter what the name denotes, then clearly every- 
thing is F, so we can conclude VxFx. When the condi- 
tion on VI is met, then we are in such a situation: if we 



prove Fa from assumptions that do not contain the 
name a and hence say nothing in particular about its 
referent, then we could just as well have used a 
different name, say b, and proved Fb. In fact, when the 
condition on VI is met, any proof of Fa can be turned 
into a proof of Fb just by replacing any involved 
occurrences of the name a by the name b. This is 
sufficient to guarantee that everything is F; hence, we 
can conclude VxFx. 

existential- Given a sentence  (at line m) containing a t  least one 
intro occurrence of a name, conclude an existentialization of 

that sentence with respect to that name. 

Condition: None. 
Annotation: rn 31 
Assumption-set: same as line m. 
Also known as: Existential Generalization. 

Examples. 

(a) 
1 (1) Fa 
1 (2) 3xFx 

(b) 
1 (1) Vx(Fx + Gx) A 

2 (2) Fa A 

1 (3) Fa + Ga 1 VE 

1,2 (4) Ga 2,3 +E 

1,2 ( 5 )  Fa & Ga 2,4 &I 

1,2 (6) 3x(Fx&Gx) 5 31 



existential- Given a sentence (at line m) and an assumption (at line 
elim i) that is an instance of some existentially quantified 

sentence that is present (at line k), conclude the given 
sentence again. 

Condition: The instantial name at line i must 
not appear in the sentence at line k 
or in the sentence at line m. Also, it 
must not appear in any of the as- 
sumptions belonging to the assump- 
tion set at line m, other than the 
instance i itself. 

Annotation: k,m 3 E  (i) 
Assumption set: all assumptions at line m other than 

i, and all assumptions at line k. 

Examples. 

(a) 
1 (1) 3xFx 

2 (2) Fa 
2 (3) Fa v Ga 
2 (4) 3x(Fx v Gx) 
1 ( 5 )  3x(Fx v Gx) 



(b) 
1 (1) 3x(Fxx + P) A 
2 (2) Faa + P A 
3 (3) VxFxx A 
3 (4) Faa 3 VE 

2,3 (5) p 2,4 +E 
1,3 (6) P 1,5 3E (2) 

Examples of violation of 3E condition. 

(a) 
1 (1) 3xFx A 
2 (2) Fa A 
3 (3) Ga A 

2,3 (4) Fa&Ga 2,3 &I 

2,3 (5) 3x(Fx & Gx) 4 31 
wrong! 1,3 (6) 3x(Fx&Gx) 1,5 3E (2) 

(b) 
1 (1) 3xFx 
2 (2) Fa 

wrong! 1 (3) Fa 

(c) 
1 ( I )  3xFax 
2 (2) Faa 
2 (3) 3xFxx 

wrong! 1 (4) 3xFxx 



Comment. If all we know is that something is F, we are 
not entitled to reason as if we know what it is that is F. 
As in the case of VI, a use of 3E  that meets the 
conditions above and uses a certain instantial name can 
be turned into a proof of the same conclusion from the 
same assumptions but using any different instantial 
name. This shows that the conclusion does not rest on 
any assumptions about the actual identity of the thing 
that is said to exist. That is, if we apply 3E to 3xFx by 
discharging the assumed instance Fa, the conditions 
ensure that we do not mistakenly use any information 
about the referent of 'a' in particular. After all, 3xFx 
says only that something is F-it doesn't tell us which 
individual is F. 

identity-intro Conclude any sentence of the form a=a. 

Condition: None. 
Annotation: =I 
Assumption set: Empty. 

Example. 
(1) c=c 

Comment. An identity statement of the form a=a, like 
a theorem, requires no assumptions to justify its asser- 
tion. 
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identity-elim Given a sentence @ (at line m) containing a name a, 
and another sentence (at line n) that is an identity 

statement containing a and another name p, conclude a 
sentence that is the result of replacing at least one 
occurrence of a in @ with p. 

Condition: None. 
Annotation: m,n =E 
Assumption set: The union of the assumption sets at 

lines m and n. 
Also known as: Leibniz's Law, Substitutivity of 

Identity 

Examples. 

(a) 
1 (1) Fa 
2 (2) a=b 

132 (3) Fb 

(b) 
1 ( I )  Fa & Ga 
2 (2) b=a 
1,2 (3) F b & G a  
1,2 (4) F b & G b  

(c) 
1 (I)  Vx(Fxa + x=a) 
2 (2) Fba 
1 (3) Fba + b=a 
1,2 (4) b=a 
1,2 ( 5 )  Vx(Fxb + x=b) 



Comment. The rule of identity elimination is not regarded as valid 

in all contexts. For instance, if Frank believes that Mark Twain is a 

novelist then, even though Twain=Clemens, it does not follow that 

he believes Samuel Langhorne Clemens is a novelist (if, for 

example, he has heard the name "Twain" but never "Clemens"). 

For historical reasons, contexts where the rule fails, such as belief 

reports, are called intensional contexts in contrast to the 

extensional contexts provided by the ordinary predicates which the 

language developed in this chapter is intended to represent. 

Exercise 3.3.2 Prove the following sequents, using the primitive rules 
of predicate logic. You may also use derived sentential 
rules. 

3x(Gx & -Fx), Vx(Gx + Hx) k 3x(Hx & -Fx) 
3x(Gx & Fx), Vx(Fx + -Hx) k 3x-Hx 
Vx(Gx + -Fx), Vx(-Fx + -Hx) k Vx(Gx + -Hx) 
3x(Fx & Ga), Vx(Fx + Hx) k Ga & 3x(Fx & Hx) 
Vx(Gx + 3y(Fy & Hy)) k Vx-Fx + -3zGz 
Vx(Gx + f i&Jx),  Vx(Fx v-Jx + Gx) kVx(Fx + Hx) 
Vx(Gx & Kx H Hx), -3x(Fx & Gx) k Vx-(Fx & Hx) 
Vx(Gx+fi), 3x((Fx&Gx) &Mi) k 3x(Fx&(Hx&Mi)) 
Vx(-Gxv-Hx), Vx((Jx + Fx) + Hx) k -3x(Fx & Gx) 
-3x(-Gx & Hx), Vx(Fx + -Hx) kVx(Fxv-Gx+-Hx) 
Vx-(Gx & Hx), 3x(Fx & Gx) k 3x(Fx & -Hx) 
3x(Fx & -Hx), -3x(Fx & -Gx) k -Vx(Gx + Hx) 
Vx(Hx + Hx & Gx), 3x(-Gx & Fx) k 3x(Fx & -Hx) 
Vx(Hx + -Gx), -3x(Fx & -Gx) k VX-(Fx & Hx) 
Vx(Fx H Gx) k VxFx e VxGx 
&Fx+Vy(Gy+Hy), 3xJx+&Gx k 3x(Fx&Jx)+3zHz 
3xFx v 3xGx, Vx(Fx + Gx) k 3xGx 
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SllO 
S l l  1" 

Vx(Fx + -Gx) I- -3x(Fx & Gx) 
Vx(Fx v Hx + Gx & Kx), -Vx(Kx & Gx) I- 3x-Hx 
Vx(Fx & Gx + Hx), Ga & VxFx k Fa & Ha 
Vx(Fx H VyGy) k VxFx v Vx-Fx 
Vy(Fa+ @xGx +Gy)),Vx(Gx + Hx), Vx(-Jx + - b )  

k 3x-Jx + -Fa v Vx-Gx 
Vx(Dx + Fx) I- Vz(Dz + (Vy(Fy + Gy) + Gz)) 
3xFxeVy(FyvGy +Hy), 3xHx, -Vz-Fz k 3x(Fx&b) 
VxFx k -3xGx w -(3x(Fx & Gx) & Vy(Gy + Fy)) 

Vx(3yFyx + VzFxz) I- Vyx(Fyx + Fxy) 
3x(Fx & VyGxy), Vxy(Gxy+Gyx) I- 3x(Fx & VyGyx) 
3x-Vy(Gxy + Gyx) k 3x3y(Gxy & -Gyx) 
Vx(Gx+Vy(Fy +Hxy)), 3x(Fx & Vz-Hxz) k -VxGx 
Vxy(Fxy + Gxy) k Vx(Fxx + 3y(Gxy & Fyx)) 
Vxy(Fxy + -Fyx) I- -3xFxx 
Vx3y(Fxy & -Fyx) k 3x-VyFxy 
Vy(3x-Fxy + -Fyy) I- Vx(Fxx + VyFyx) 
3xFxx + VxyFxy t Vx(Fxx + VyFxy) 
a=b k b=a 
a=b & b=c k a=c 
a=b, b#c I- a#c 
Fa & Vx(Fx + x=a), 3x(Fx & Gx) k Ga 
Vx x=x + 3xFx, Vx(-Fx v Gx) k 3x(Fx & Gx) 
Vx(Fx + Gx), Vx(Gx + Hx), Fa & -Hb I- a#b 
3x((Fx & Vy(Fy + y=x)) & Gx), -Ga I- -Fa 
3xVy((-Fxy +x=y) & Gx) I- Vx(-Gx+jy(y#x &Fyx)) 
3x(Px & (Vy(Py + y=x) & Qx)), 3x-(-Px v -Fx) 

k 3x(Fx & Qx) 
Vx3yGyx, Vxy(Gxy + -Gyx) I- -3yVx(x#y + Gyx) 



3.4 Sequents, Theorems, and Derived Rules of Proof 

Exercise 3.4.1 Prove the following sequents, using the primitive rules 
from chapter 3 and any of the primitive or derived 
rules from chapter 1. 

-VxPx - IF  3x-Px Quantifier Exchange 

-3xpx it Vx-PX QE 
-Vx-PX -IF ~ X P X  QE 
-3x-PX it VXPX QE 
Vx(Px & Qx) -IF VxPx & VxQx Confinement 

Vx(Px + Q) it 3xPx + Q Conf 
VxPx v VxQx F Vx(Px v Qx) Conf 
3xy(Px & Qy) -It 3xPx & 3xQx Conf 
3x(Px v Qx) i F  3xPx v 3xQx Conf 
3x(Px + Q) - I F  VxPx + Q Conf 
P + 3xQx -It 3x(P + Qx) Conf 
P + VxQx -IF Vx(P + Qx) Conf 

QE Comment. The important quantifier-exchange rules es- 
(derived rule) tablish that an initial tilde can always be moved to the 

right of an adjacent quantifier, changing the quantifier 
from a universal to an existential (or vice versa). Also, 
a tilde that immediately follows an initial quantifier 

can be moved to the front of the sentence provided, 
again, that the quantifier is changed as just described. 
Although the above versions of the rules (S 150-S153) 
involve quantifications of a simple formula, it is easily 
recognizable that the proofs of these sequents do not 



depend on the simplicity of the quantified formula. 
QUANTIFIER EXCHANGE (QE) may thus be used 
as a derived rule of proof as below. 

Example. 
1 ( I )  3x-(Fx&Gx) A 
2 (2) 3xGx + Vx(Fx & Gx) A 
1 (3) -Vx(Fx & Gx) 1 QE 
1,2 (4) -3xGx 2,3 MTT 

1,2 (5) Vx-Gx 4 QE 

Exercise 3.4.2 Prove the fo l l  ow in  g sequent  s , using any of the 
primitive or derived rules established so far. 

k Vx(Fx + Gx) + (VxFx + VxGx) 
k Vx(Fx + Gx) + (3xFx + 3xGx) 
k 3x(Fx v Gx) e 3xFx v 3xGx 
k Vx(Fx & Gx) H VxFx & VxGx 
k 3x(Fx & Gx) + 3xFx & 3xGx 
k VxFx v VxGx + Vx(Fx v Gx) 
k (3xFx + 3xGx) + 3x(Fx + Gx) 
k (VxFx + VxGx) + 3x(Fx + Gx) 
k -Vx(Fx w Gx) v (VxFx w VxGx) 
k -Vx(Fx w Gx) v (3xFx w 3xGx) 
k -Vx(P & Fx) H (P + -VxFx) 
k -3x(P & Fx) w (P + -3xFx) 
k Vx(P v Fx) w (-P + VxFx) 
k 3x(P v Fx) e (-P + 3xFx) 
k Vx(Fx + P) H (3xFx + P) 
k -3x(Fx + P) w -(VxFx + P) 
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k Vx(Fx e P) + (VxFx H P) 
k Vx(Fx e P) + (3xFx e P) 
k (3xFx H P) + 3x(Fx H P) 
k (VxFx e P) + 3x(Fx e P) 
k Vx3y x=y 
k Vx(Fx w 3y(x=y & Fy)) 
k Vx(Fx w Vy(x=y + Fy)) 
k Vxy(Rxy e x=y) + VxRxx 

prenex form Comment. The quantifier-exchange rules and the confinement rules 

(S 154-S 15 1) indicate that any sentence may be converted into an 

equivalent sentence in which no connective is outside the scope of 

any quantifier in the formula. Such a sentence, called a PRENEX 

sentence, has all its quantifiers in a row at the beginning of the 

sentence. 

Exercise 3.4.3 For each of the following, find a prenex equivalent and prove the 

equivalence. 

Vx(Px + VzRxz) 

3y(Fy&Vz(Hyz & Jz)) 

3xFxa + VyGyaa 

-VxFx + 3xHx 

-3x(3yFyx + -VzGzx) 

Find prenex equivalents for the other non-prenex sentences in this 

chapter and the next. 
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Chapter 4 
Models 

4.1 Finite Interpretations and Expansions with One- 
Place Predicates without Identity 

finite Definition. A FINITE INTERPRETATION for a set 
interpretation of symbolic sentences (containing one-place predicates 

but no many-place predicates) consists of three 
components: 

universe A finite set of objects called the UNIVERSE or 
DOMAIN. The universe must contain at least one 
object. 

predicate An EXTENSION for each of the predicates in 
extensions the sentences. Each extension is a (possibly emp- 

ty) subset of the universe containing those objects 
to which the predicate applies. 

truth-value TRUTH- VALUE SPECIFICATIONS for the 
specifications sentence letters in the sentences. Each of the 

sentence letters is paired with the specification 
True or with the specification False. 

Comment. Such an interpretation is finite because its 
universe is a finite set. In the rest of this section, we 
will use 'interpretation' as shorthand for 'finite 
interpretation'. 
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evaluation Comment. Given an interpretation for a set of 
sentences, it will be possible to determine truth values 
for the sentences in the set. 

Example. 
Here is a conditional sentence and an interpretation in 
which it can be evaluated: 

U: {a,b,c} 
F: {a,b} 
G: {b} 
P is False 

In this interpretation the antecedent of the sentence is 
true since everything in the universe is either F or not 
G (a and b are both F, c is not G). 

The consequent of the conditional is false, since both 
disjuncts are false. (P is specified false. The existential 
wff is false because there is nothing in the extension of 
G that is not also in the extension of F.) 

The conditional is therefore false. 

Comment. The procedure for determining the truth 
values of sentences in an interpretation for them is 
given more precisely in section 4.2. 



universal Definition. The EXPANSION OF A UNIVERSAL 
expansion WFF relative to a universe of n elements consists of n 

conjuncts, where the nth conjunct is an instance of the 
formula with the name of the nth element in the uni- 
verse as the instantial name. (We refer to this as a 
UNIVERSAL EXPANSION for short.) 

Comment. Strictly speaking, all conjunctions have 
exactly two conjuncts. Expressions having the form @ 

& y~ & . . . are unproblematic, however, because of the 
associativity of & (S40). So, it is acceptable to use the 
notion of a conjunction with more than two conjuncts 
in the definition of a universal expansion. Likewise, 
because of the associativity of v (S41), we use the 
notion of a disjunct with more than two disjuncts in the 
definition of an existential expansion below. 

Example. 
The expansion of 

Vx(Fx + Gx) 
in the universe {a )  is 

(Fa + Ga). 
In the universe {a,b} its expansion is 

(Fa + Ga) & (Fb + Gb). 
In the universe {a,b,c} its expansion is 

(Fa + Ga) & (Fb + Gb) & (Fc + Gc), 
and so on. 



existential Definition. The EXPANSION O F  AN EXISTEN- 
expansion TIAL WFF relative to a universe of n elements 

consists of n disjuncts, where the nth disjunct is an 
instance of the formula with the name of the nth ele- 
ment in the universe as the instantial name. (EXIS- 
TENTIAL EXPANSION for short.) 

Example. 
The existential 

3x(Fx & Gx) 
expands to 

( F a & G a ) v ( F b & G b ) v  ... 
for the universe {a,b, . . . } . 

overlapping Comment. In cases where quantifiers overlap, expansion 
quantifiers may take several steps, starting with the quantifier with 

the widest scope and then expanding those with 
narrower scope. Expansion is complete when no 
quantifiers remain. 

Example. 
In the universe {a,b} 

Vx(Fx + 3yGy) 
is first expanded to 

(Fa + 3yGy) & (Fb + 3yGy), 
then to 

((Fa +(Ga v Gb)) & (Fb + (Ga v Gb)). 
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truth values Comment. The truth values of complex sentences in a 
of complex given interpretation are determined as follows. 
sentences 

quantifiers (i) Construct the expansions of all universal and exis- 
tential formulas, then assign tmth values for the 
resulting quantifier-free sentences according to 
steps ii-iv below. The tmth value of a quantified 
sentence is the tmth value of its expansion. 

sentence (ii) Sentence le t ters  have the truth values  d i rec t ly  
letters assigned to them in the interpretation. 

predicates (iii)Formulas of the form Fa,  where F is a predicate 
and a is a name, are true if the object a is in the 
extension of F and false otherwise. 

connectives (iv) The truth values for the sentential connectives are 
determined according to the usual truth-functional 
rules for the connectives. 
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Exercise 4.1.1 Give the expansions for the following sentences 
(a) for the universe {a} 
(b) for the universe {a,b} 
(c) for the universe {a,b,c} 

i * 
ii* 
iii* 

iv * 
v* 
vi * 
vii* 
viii* 
ix* 
X* 

VxFx 
3xFx & P 
VxFx + 3xGx 
Vx(Gx w P) v VxHx 
Ha v 3xGx 
3x(Fx v Hx) 
VxFx H 3x(Fx & -Hx) 
-Vx(Fx & Gx) 
-Vx(Fx & -VyGy) 
-(VxGx H 3x(Hx & -Fx)) 

Exercise 4.1.2 Say whether the sentences in exercise 4.1.1 are true in 
the following interpretations: 

a* u: {a),  F: {a}, G: { 1, H { 1, 
P is False 

b* U: {a,b}, F: {a}, G: {a,b}, H: { }, 
P is True 

c* U: {a,b,c}, F: {a,b,c}, G: {a,b}, H: {b}, 
P is False 



4.2 Finite Countermodels for Arguments with One- 
Place Predicates without Identity 

model Definition. A MODEL for a set of sentences is an 
interpretation in which all the sentences in the set are 
true. 

countermodel Definition. A COUNTERMODEL for a given argu- 
ment is a model for the premises in which the 
conclusion is false. 

Comment. The idea behind a countermodel is the same 
as that behind using a truth table to demonstrate that an 
argument is invalid. The point is to demonstrate that it 
is possible for all the premises of an argument to be 
true and still have the conclusion turn out false. Thus, 
a countermodel is the predicate-logic analogue of an 
invalidating assignment (introduced in chapter 2). 

Comment. Given an invalid sequent with one-place 
predicates and no many-place predicates, it is always 
possible to find a finite countermodel. Indeed, if the 
sequent contains n predicates, the universe of a 
countermodel need not have more than 2n elements, 
and will often have fewer. 

Comment. Expansions provide a convenient way of 
demonstrating that a given interpretation is a counter- 
model for an argument. 



Examples. 

(a) 
Give a countermodel and an expansion to show this 
sequent invalid: 

3xGx t P + VxGx 

Model: 
U: {a,b) 
G: {a} 
P is True 

Expansions: 
The premise 3xGx expands to 

Ga v Gb 
with these truth assignments: 

T v F  
T 

The conclusion P + VxGx expands to 

P + (Ga & Gb) 
with these truth assignments: 

T + (T & F) 
T +  F 

F 

The premise is true and the conclusion is false in this 
interpretation, so the argument is invalid. 



(b) 
Give a countermodel and an expansion to show this 
sequent invalid: 

VxFx + VxGx k Fm + 3xGx 

Model: 
U: {m,a) 
F: {m} 

G: 0 

Expansion: 
The premise (VxFx + VxGx) expands to 

F m & F a + G m & G a  
T F F  T 

The conclusion (Fm + 3xGx) expands to 
F m + G m v G a  
T F F  F F  

The conclusion is false in this interpretation and the 
premise is true; hence, this interpretation is a counter- 
example for the given sequent. 

Exercise 4.2 Construct countermodels and expansions to show the 
following sequents invalid. 

i * VxFx + Vx Gx k Vx(Fx + Gx) 
ii* 3xFx + 3xGx k Vx(Fx + Gx) 
iii* 3xFx & 3xGx k 3x(Fx & Gx) 
iv* 3x(Fx v Gx) k VxFx v VxGx 
v* 3x(Fx + Gx) k 3xFx + 3xGx 



vi * 
vii* 
viii* 
ix * 
X* 
xi* 
xii* 
xiii* 
xiv* 
xv* 
xvi * 
xvii * 
xviii* 
xix* 

xx* 

3x(Fx + Gx) t VxFx + VxGx 
VxFx H VxGx t Vx(Fx H Gx) 
3xFx e 3xGx t Vx(Fx e Gx) 
VxFx H P k Vx(Fx e P) 
3xFx e P t Vx(Fx e P) 
3x(Fx w P) k 3xFx w P  
3x(Fx w P) k VxFx w P 
Vx(Fx + Gx), Vx(Gx + Hx) k Vx(Hx + Fx) 
Vx(Fx + -Hx), Vx(Hx + -Gx) k 3x(Fx & Gx) 
3xFx w VxGx, -Vx(Fx + Hx) k 3xHx + 3x-Gx 
Vx(Gx v -Hx), 3x(Gx & Fx) k 3x-Hx 
Vx(Fx & Gx + Hx), 3x(Fx & Hx) t 3xGx 

3xFx, 3xGx, 3xHx t Vx(Fx v Gx + Hx) 
-VxFx k VX-FX 

3x(Fx + 3yGy) t 3xFx + 3yGy 

4.3 Finite Countermodels for Arguments with Many- 
Place Predicates without Identity 

ordered pair The notation (a,P) denotes the ORDERED PAIR 
consisting of two objects named by a and P (a and P 
may be the same). So long as the two objects are 
different objects, the ordered pair denoted by (a,P) is 
different from the pair denoted by (P, a). 

Comment. The idea behind ordered pairs is easily 
extended to cover orderings of more than two objects. 
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ordered An ORDERED n-TUPLE, (ao, a,, ..., an), consists 

n-tuple of the n objects named by ao, a,, ..., an .  

Comment. As with ordered pairs, changing the order- 
ing of ao, a,, ..., an usually changes the identity of the 
n-tuple. 

n-place Definition. The EXTENSION OF AN n - PLACE 
extensions PREDICATE is a set of ordered n-tuples of objects 

from the unverse. 

Example. 
Given a universe containing the objects a, b, and c, and 
a two-place predicate R, the set {(a,b), (c,b), (a,a)} 
gives a possible extension for R. In this example, the 
sentences Rab, Rcb, and Raa are true, while the 
sentences Rac, Rbc, Rba, Rca, Rbb, and Rcc are all 
false. 

finite Definition. A finite interpretation for a set of sentences 
interpretation containing one-place and many-place predicates con- 

sists of the following: 

A finite universe. or domain. 

Extensions for all the predicates appearing in the 
sentences. 



Truth value specifications for the sentence letters 
appearing in the sentences. 

Example. 
Given a universe 

U: {a, b} 
the expansion of the wff 

Vx3yFxy 
is constructed by first expanding the universal 
quantifier (since it has wider scope) to yield 

3yFay & 3yFby. 
Each existential is then expanded to yield 

(Faa v Fab) & (Fba v Fbb). 

Comment. The definition of an interpretation for a set of sentences 

containing one-place predicates, given in section 4.1, is just a 

special case of the definition for many-place predicates. 

countermodels Comment. As before, a countermodel for a given 
sequent is a model for the premises where the 
conclusion is false. 

Example. 
The sequent 

'dx3yRxy k 3y'dxRxy 
is invalid, as shown by the following interpretation: 

U: {a, b} 

R: {(a, b), (b, a)} 

Expansions: 
Premise (Raa v Rab) & (Rba v Rbb) 



Conclusion (Raa & Rab) v (Rba & Rbb) 
F & T T & F  

F v F 
F 

Exercise 4.3.1 Construct countermodels for the following invalid 

sequents. 

i * 
ii* 

iii* 
iv * 
v* 
vi * 
vii* 
viii* 
ix * 

3xFxx k VxyFyx 

Vy3xFxy k 3xFxx 
Vx3yFxy k 3xVyFxy 
Vx3y-Fxy, VxVy(Gxy + -Fxy) k Vx3y-Gxy 
Vx(Fx + 3yGxy) k VxVy(Fx v -Gxy) 
Vx3yVzVxyz k 3yVxVzVxyz 
Vx-VyTxy k Vx-3yTxy 
3xyz((Fxy &Fyz) &-(Fxz vFyx)) k Vx3yFyx + Vx-Fxx 
Vx3yFxy, 3x-VyGyx, 3xyFxy w 3xy(Gyx & -Gxy) 

k 3y(Gxy v Gyx) 
3x3yFxy w -3xGxx, Vy3xGyx k Vx-Fxx 
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Exercise 4.3.2 Establish whether each of the following sequents is 
valid or invalid with either a proof or a countermodel. 

vi 
vii 
. . . 

V l l l  

ix 
X 

xii 
. . . 

X l l l  

xiv 
xv 
xvi 
xvii 

xviii 

xix 
XX 

b'x(Fx + -Gx), 3x(Gx & -Fx) k -3xFx v b'x-Gx 
b'x(Fx + -Gx), 3x(Gx & Fx) k -3xFx v b'x-Gx 
3x(Fx + Gx) + 3x(Fx & -Hx) 

k 3x(Fx & Gx) + -b'x(Gx + Hx) 
3x(Fx + Gx) + 3x(Fx & -Hx) 

k 3x(Fx & Gx) + b'x(Gx + Hx) 
3x(Fx v P), P w -3xGx, -3x(Fx & Gx), 

b'x(Hx + -Fx & -Gx) k P v b'x(Hx + P) 
b'x(Fx & Gx + Hx), 3xFx t 3x(Gx + Hx) 
b'x(Fx & -Gx + Hx), 3xFx t 3x(Hx + -Gx) 
k YxFx v 3x-Gx + -3x(Fx v Gx) 
t VxFx v 3xGx + 3x(Fx v Gx) 
3x(Fx v Gx), 3xFx + b'xHx, 3xGx + -3xHx 

k -(3xHx & 3x-Hx) 
3x(Fx v Gx), 3xFx + b'xHx, 3xGx + -3xHx 

t -(b'xHx v b'x-Hx) 
k -3x(Bx & b'y(Sxy w -Syy)) 
k b'xy(Fxy + Fyx) w b'xy(Fxy w Fyx) 
k b'xy(Fxy + Fxy) H b'xy(Fxy H Fyx) 
b'xyz(Rxy&Rxz + -Ryz) k -b'xRxx 
b'xyz(Rxy&Ryz + -Rxz) k b'x-Rxx 
b'xyz(Fxy&Fyz + Fxz), b'xy(Fxy + Fyx) 

k b'x3yFxy + b'xFxx 
b'xyz(Fxy&Fyz + Fxz), b'x3y(Fxy + Fyx) 

k b'x3yFxy + b'xFxx 
3xb'y-Fxy k 3xb'yz(Fxz + Fzy) 
3xb'yFxy t 3x-b'yz(Fxz + Fzy) 



4.4 Finite Countermodels with Identity 

name Definition. A NAME EXTENSION consis ts  of a 
extension single object selected from the universe. 

Comment. The introduction of identity statements 
requires greater care about the different roles played 
by names in the language of predicate logic (which we 
refer to as the object language) and in the language we 
use to specify interpretations (referred to as the 
metalanguage). Things may have more than one name 
in the object language but each must have a unique 
metalinguistic name in the specification of an inter- 
pretation. To mark this distinction, in this section we 
shall use italicized letters as names in the meta- 
language. To reduce the potential for confusion when 
specifying an interpretation for a set of sentences we 
also recommend the practice of not using italicized 
versions of letters already appearing in the sentences. 

Comment. Italicized (metalinguistic) names are not 
part of the language we are studying. Rather, they are 
our names for the things denoted by names in the 
object language. It is important to bear in mind that 
although a thing may be named by various names in 
the object language, each thing has only one meta- 
linguistic name. This will aid in the specification of 
interpretations for wffs containing the identity symbol. 
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finite Definition. A finite interpretation for a set of sentences 
interpretation containing one-place and many-place predicates as 

well as the identity symbol consists of the following: 
A finite universe, or domain. 
Extensions for all the predicates appearing in the 
sentences. 
Extensions for the names appearing in the 
sentences. 
Truth value specifications for the sentence letters 
appearing in the sentences. 

identity truth Identity statements of the form a=p are true if and on- 
valuations ly if the extension of a is the extension of P. 

Comment. Because an object never has more than one 
metalinguistic name, identity statements occurring in 
expansions are true if and only if they are of the form 
a=a. 

Example. 
The expansion of a sentence containing the identity 
symbol can only proceed given both the universe and 
the name extensions. Given the universe 

U: {c ,  d }  
and name extensions 

a: c 

b: c 

the expansion of the wff 
'dx(Fxa + x#b) 



Exercise 4.4 
i" 
. . 
11 
. . . 
111 

iv 
v* 

vi 
vii 
. . . 

V l l l  

ix " 
X 

requires first the replacement of the object language 
names with their metalanguage equivalents, yielding: 

Vx(Fxc + x#c). 
Then expansion proceeds by the normal method, to 
yield: 

(Fcc + c# c) & (Fdc + d#c). 
Finally, given the predicate extension 

F: {(c, 4, (dj c)I 
the conjunction can be seen to be true given the falsity 
of the antecedent of the left conditional and the truth of 
both antecedent and consequent on the right. 

Construct countermodels for the following sequents. 
a=b, c=d k a=c 
Fa, a#b k -Fb 
Vx3y x=y k 3yVx y=x 

3x(x#a + Fx), a=b k Fb 
3xy((Fx & Fy) & x # y) k VxFx 
Vxy(Fx & Gy + x=y) k -3x(Fx & Gx) 
3x(x#a + Fx v Gx) k 3x(Fx v Gx + x#a) 
Vxy(Fxy + y=x) k 3xFxx 
3xVy(Fxy e x#y) k Vxyz((Fxy & Fxz) + y=z) 
Vxy((Fx & Fy) & x#y) 

k Vxy(((Fx & Fy) & Fz) & ((xf y & y#z) & x#z)) 



4.5 Infinite Countermodels 

infinite Comment. Sometimes an invalid argument cannot be 
countermodel shown invalid by means of afinite countermodel. Such 

cases require an INFINITE COUNTERMODEL, i.e., 
one with an infinite number of objects in its domain. 

Comment. A formal treatment of infinite sets requires 
an advanced course in set theory. Nonetheless it is 
possible to exploit knowledge about sets of numbers to 
construct counterexamples for invalid arguments that 
require infinite models. The wffs of predicate logic can 
be given interpretations in terms of arithmetical 
relationships in infinite domains such as the natural 
numbers or the set of positive and negative integers. 

For ease of exposition we will take the natural 
numbers (0,1,2,3, etc.) as the infinite domain to be 
used. (This set is denoted N.) Note also that we cannot 
use expansions to construct countermodels, since an 
expansion for an infinite number of objects would 
involve infinitely long sentences. 
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numerical Definition. A NUMERICAL COUNTERMODEL to 
countermodel an argument is a countermodel whose universe is N. 

Example. 
Vxyz(Rxy & Ryz + Rxz), Vxy(Rxy + -Ryx), 
Vx-Rxx, Vx3yRxy k 3yVxRxy 

Model: 
U: N 
R: {(m,n) such that m<n} 
(also written {(m,n) : m<n}) 

That is, Rxy means that x is strictly less than y. 

The four premises are true, since (i) if x is less than y 
and y is less than z then x is less than z, (ii) if x is less 
than y then y is not less than x, (iii) no number is less 
than itself, and (iv) for any number there is a greater. 
The conclusion is false, however, since it says that 
there is a number greater than any number. That is, no 
number y is such that for every number x, (x,y) 
belongs to R. 

It can be shown that only an infinite model can make 
all four premises true. A given single object bears R to 
something (fourth premise), but it doesn't bear R to 
itself (third premise), so a second object must be 
present. This second object bears R to something 
(fourth premise), but it doesn't bear R to the first 
object (second premise) and it doesn't bear R to itself 
(third premise). Hence, a third object must be present. 
This third object doesn't bear R to itself (third 



premise), and it doesn't bear R to the second object 
(second premise), and since the first object bears R to 
this third object as well as the second (first premise), 
the third doesn't bear R to the first (second premise). 
But this third object bears R to something (fourth 
premise), hence a fourth object must be present, and so 
forth. Thus, the four premises require an infinite 
universe. 

Exercise 4.5.1 Return to any invalid sequent of this chapter, and give 
a numerical countermodel for it. (Of course, up to this 
point infinite models were not necessary for demon- 
strating invalidity, but they are possible.) 

Exercise 4.5.2 Give numerical countermodels to the following 
sequents. 

i * b'xyz(Fxy & Fyz + Fxz), b'x3yFxy k 3xFxx 
ii* Vx3yVz(Fxy & (Fyz + Fxz)) k 3xFxx 
iii* Vx3yFxy, Vxyz(Fxy & Fyz + Fxz), Vx-Fxx 

k b'xy(Gx & -Gy + Fxy v Fyx) 
iv* Vx3yz(Fxy & Fzx), Vxyz(Fxy & Fyz + Fxz) 

k 3xy(Fxy & Fyx) 
v* Vx-Fxx, b'x3yb'z(Fxy & (Fyz + Fxz)) 

k b'xyz(Fxy & Fyz + Fxz) 

vi * Vxyz(Gxy & Gyz + Gxz), Vxy(Gxy + -Gyx), 
b'x3yGyx, b'x(x#a + Gxa) k 3yb'x(x#y + Gyx) 



Answers to Selected Exercises 

Note: In almost all cases the answers given are not the only correct answers possible. 

Chapter 1 

Exercise 1.1 

i False 
11 False ... 
111 False 
iv True 
v False 
vi True 
vii False 
... 

VIII True 
ix True 
x False 

Exercise 1.2.1 

i 
11 
... 
111 

iv 
v 

vi 
vii 
. . . 

V l l l  

ix 
X 

xi 
xii 
... 

Xl l l  

xiv 
xv 

Atomic Sentence 
Not wff 
Not wff 
Conditional: Antecedent A; Consequent B 
Not wff 

Conditional: Antecedent A; Consequent (B + C) 
Conditional: Antecedent (P & Q); Consequent R 

Disjunction: Left disjunct (A & B); Right disjunct (C + (D e G)) 
Negation 
Not wff; requires outer parentheses to be a disjunction 
Not wff 
Not wff 

Conjunction: Left conjunct -(P & P); Right conjunct (P e (Q v -Q)) 

Biconditional: Left side -((B v P) & C); Right side ((D v -G) -+ H) 
Not wff 



Answers to Chapter 1 Exercises 

Exercise 1.2.2 

iv A + B  

vi A + (B + C) 
vii P & Q - + R  
viii (A & B) v (C + (D e G)) 
... 

XIII -(P & P) v (P - Q v -Q) 
xiv -((B v P) & C) - D v -G + H 

Exercise 1.2.3 

i 

11 
. . . 
111 

iv 
v 
vi 

vii 
... 

Vlll 

ix 
X 

Unambiguous: (P H (-Q v R)) 

Unambiguous: ((P v Q) + (R & S)) 
Unambiguous: (((P v Q) + R) e S) 
Ambiguous 
Ambiguous 
Ambiguous 

Unambiguous: ((P & Q) e (-R v S)) 
Ambiguous 

Unambiguous: ((P + (Q & -R)) H ((-S v T) + U)) 
Ambiguous 

Exercise 1.3 

P & - Q  
-P + -T 
P + T  

T + P  
-P v T(or -T + -P) 
(T + P) + -U 

(Q&-S)+R 

-(P v R) + -T 
-T v (P v R) (or the same as 8) 

(P & R) + T 
T & -(P v R) 

R 4 (Q + P) 
T + U  
-T + -(P v R) 
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(Q + R) & (P + Q) + (P + R) 
(P v R) & -(P & R) + Q 
(P & Q) & -R + (-T & (S & U)) 

T e S  
-U + (-P v Q) or (-U + (-Q + -P)) 

((P + Q) + P) + P 
P & Q - + R  
- Q & S  
(-Q + -R) v -P or (P + (-Q + -R)) 

(T & -P) + -R 
(T & P) + (R & -Q) 

Exercise 1.4.1 

11. P v Q, -Q v R, -P F [the sentence at line 51 

1 (1) P v Q  
2 (2) -Q v R 
3 (3) -P 

1,3 (4) Q 
1,2,3 (5) R 
or 

1,2,3 (5) (-Q v R) & Q 
or 

1,2,3 (5) Q (-Q v R) 

A 

A 
A 
2,3 vE 

1,4 +E 
3,5 RAA (3) 
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Exercise 1.4.2 
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Exercise 1.5.1 

S11 P i t  --P 

A 
A 
1,2 RAA (2)  

A 
A 
1,2 RAA (2)  
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A 
A 
A 

1,3 +E 
2,4 RAA (3) 

A 
A 
A 

1,3 +E 
2,4 RAA (3) 

A 
A 
A 
1,2 RAA (3) 

4 +I (2) 



Answers to Chapter 1 Exercises 

A 

A 
A 

3 vI 
2,4 RAA (3) 
1,5 +E 

6 VI 
2,7 RAA (2) 

A 

A 

A 

A [for RAA] 
A [for RAA] 
A [for RAA] 

2,6 +E 
5,7 RAA (6) 

1,8 vE 
3,9 +E 
10 vI 
4,11 RAA (5) 

12 vI 

4,13 RAA (4) 



Answers to Chapter 1 Exercises 

A 
A [for RAA] 

2 vI 
1,3 RAA (2) 
A [for RAA] 

5 vI 
1,6 RAA (5) 
4.7 &I 

A 
1 &E 
1 &E 

A 

2,4 vE 

3,5 RAA (4) 

A 
A 
A 
A 
2,3 RAA (4) 

5 +I (3) 
1,6 RAA (2) 
A 

8 +I (3) 
1,9 RAA (8) 
7,lO &I 

A 

A [for RAA] 
1 &E 
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2,3 +E 
I &E 
4,5 RAA (2) 

A 
A 
A 

1,3 vE 
4 vI 
2,5 RAA (3) 

6 VI 
2,7 RAA (2) 

A 

A 
A 

1,3 vE 
4 vI 
2,5 RAA (3) 

6 VI 

2,7 RAA (2) 



Answers to Chapter 1 Exercises 

A 

A 
A 

1,3 vE 
A 

4,5 vE 

6 VI 
2,7 RAA (3) 

8 VI 

9 VI 
2,10 RAA (5) 

11 VI 

12 VI 

2,13 RAA (2) 



Answers to Chapter 1 Exercises 

A 
A 
A 

3 VI 
2,4 RAA (3) 
A 

6 VI 
7 VI 
2,8 RAA (6) 
1,9 vE 

5,10 vE 
I1 VI 
12 VI 

2,13 RAA (2) 

A 
A [for RAA] 
1 &E 
1 &E 
A [for RAA] 
3,5 &I 
6 VI 
2,7 RAA (5) 
4,8 vE 
3,9 &I 
10 VI 

2,11 RAA (2) 

A 
A [for RAA] 
A [for RAA] 
3 &E 
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Exercise 1.5.2 

2,4 RAA (3) 
1,s vE 
6 &E 
2,7 RAA (2) 

A [for RAA] 
A 
3 &E 
l0 , l l  RAA (3) 
1,12 vE 
13 &E 

14 VI 
9,15 RAA (10) 
16 VI 
9,17 RAA (9) 
8.18 &I 

A 

I HE 
I ME 

A 
A 
A 

3,6 +E 
5,7 RAA (6) 
5,s &I 
9 vI 
4,10 RAA (5) 

2,11 'E 
11,12 &I 

13 VI 

4,14 RAA (4) 
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Q & R , Q + P v S , - ( S & R ) F P  
(1) Q & R  
(2) Q + P v S  
(3) -(S & R) 
(4) Q 
(5) R 
(6) P v S  
(7) -P 
(8) S 
(9) S & R  
(10) p 

A 
A 
4 &E 
3,5 RAA (4) 

1,6 vE 
7 &E 
2,8 RAA (3) 
9 +I (2) 

A [for +I] 
A [for RAA] 
12 &E 
11,13 RAA (12) 

1,14 vE 
15 &E 

16 +I (1 1) 

10.17 -1 

A 
A 
A 
1 &E 
I &E 
2,4 +E 
A [for RAA] 

6,7 vE 
5,s &I 
3,9 RAA (7) 
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Exercise 1.5.3 

i 

I1 

11 

iv 

v 
vi 

vii 
... 

Vlll 

ix 

X 

Form 
Trans 

HS 
v Comm 

Dist &/v 
DN 

Neg+ 

v+ 
TC 
DM 

Sim Dil 

Exercise 1.5.4 

Scibstitcition 
(P/R; Q/S) 
(PI-P; Q/Q v R; RIS) 

(PIP & Q; Q/R) 

(PIP v Q; Q/-R; RI-S) 

(PIR v S) 
(PIP v R; Q/S) 

(PIP; Q/Q v R) 
(p/-(p & Q); Q/R) 
(PIP & Q; Q/R & S) 

(PIP; Q/R v S; R/Q & R) 

A 

A [for +I] 
A 
1,3 BP 
3,4 &I  

5 +I (3) 
A 
1,7 BP 
7,8 &I 
9 +I (7) 
2,6,10 Sim Dil 

1 1 +I (2) 

A 

I ME 

I e E  

A 

4 v+ 
2,5 Spec Dil 
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(P & Q) v (R v S) t ((P & Q) v R) v S 

(1) (P & Q) v (R v S) 
(2) P & Q 
(3) (P & Q) v R 

(4) ((P Q) v R) v S 
(5) P & Q + ( ( P & Q ) v R ) v S  

(6) R v S  
(7) R 
(8) (P & Q) v R 

(9) R + ( P & Q ) v R  
(10) S + S  

(11) ( ( P & Q ) v R ) v S  
(12) R v S + ( ( P & Q ) v R ) v S  

(13) ( ( P & Q ) v R ) v S  

4 v+ 
3,7 Spec Dil 
6,s &I 

9 DM 
10 +I (4) 
11  v+ 

A 

A [for +I] 
2 vI 
1,3 vE 
4 DM 
5 &E 

6 +I (2) 

A [for +I] 
8 VI 

1,9 vE 
10 DM 
11 &E 

12 +I (8) 
7,13 -1 

A 
A 

2 vI 

3 vI 
4 +I (2) 

A 
A 

7 vI 

8 +I (7) 
Id 

6,9,10 Corn Dil 

1 1 +I (6) 
1,5,12 Sim Dil 
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A 

A 

A 

2 &E 

2 &E 

A [for +I] 
3,6 MTT 

7 Neg+ 
4,8 IA 

1,9 vE 

5,10 vE 

I I +I (6) 
12 v+ 

A 

A [for +I] 
A [for RAA] 

2,5 +E 

3,s MTT 
4 &E 
6,8 MTT 
4 &E 

10 TC 

9 TC 

11,12 el 
7,13 RAA (5) 

1,14 vE 

15 +I (4) 
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S79 ( P H - Q ) + - R , ( - P & S ) v ( Q & T ) , S v T + R F Q + P  
1 (1) (PH -Q) + -R A 

2 (2) (-P & S) v (Q & T) A 

3 (3) S v T + R  A 
4 (4) Q A [for +I] 
5 (5) -P A [for RAA] 
5 (6) P + -Q 5 FA 
4 (7) - Q + P  4 FA 

4,s (8) P e - Q  6,7 e I  

1,43 (9) -R 1,s +E 

1,3,4,5 (10) -(S v T) 3,9 MTT 
1,3,4,5 (1 1) -S & -T 10 DM 
1,3,4,5 (12) -S 11 &E 

1,3,4,5 (13) P v -S 12 VI 
1,3,4,5 (14) -(-P & - 4 )  13 DM 
15 (15) - P & S  A 
15 (16) -P 15 &E 
15 (17) s 15 &E 
15 (18) --S 17 DN 
15 (19) -P& --S 16,18 &I 

(20) -P & S + -P & --S 19 +I (15) 
1,3,4,5 (21) -(-P & S) 14,20 MTT 

1,2,3,4,5 (22) Q & T 2,21 vE 
1,2,3,4,5 (23) T 22 &E 
1,3,4,5 (24) -T 11 &E 
1,2,3,4 (25) P 23,24 RAA (5) 

1,2,3 (26) Q + P 25 +I (4) 

A 
A 

A [for +I] 
3 FA 

4 +I (3) 
A 
6 &E 

7 TC 
8 +I (6) 
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1,5,9 Sim Dil 

2,10 +E 

P v ( R v Q ) , ( R + S ) & ( Q + T ) , S v T + P v Q , - P t Q  

(1) P v (R v Q) A 

(2) (R + S) & (Q + T) A 
(3) S v T + P v Q  A 
(4) -P A 
(5) R v Q  1,4 vE 

(6) R + S  2 &E 
(7) Q + T  2 &B 
(8) S V T  5,6,7 Com Dil 

(9) P v Q  3,8 +E 

(10) Q 4,9 vE 

A 
A 
A [for +I] 
A 
4 TC 

5 +I (4) 
A 

2 Explimp 
7,8 MTT 
9 DM 
A 
11 FA 

12 4 1  (1 1) 
A 
14 DN 

15 TC 
1,16 +E 
17 TC 

18 4 1  (14) 
10,13,19 SimDil 

20 4 1  (7) 
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3,6,21 Sim Dil 
22 +I (3) 

A 

A [for +I] 

2 Neg+ 

A [for +I] 
3 &E 
4,5 &I 

1,6 +E 
3 &E 

7,8 vE 

9 +I (4) 

10 +I (2) 

1 1  v+ 

(P + Q) & (R + P), (P v R) & -(Q & R) t (P & Q) & -R 

(1) (P + Q) & (R + P) A 
(2) (P v R) & -(Q & R) A 

(3) P + Q  I &E 

(4) R + P  1 &E 

(5) P v R  2 &E 
(6) -(Q & R) 2 &E 
(7) -Q v -R 6 DM 

(8) - P + R  5 V+ 

(9) -P + -R 4 Trans 
(10) --P 8.9 TA 
(11) p 10 DN 

(12) R +  Q 3,4 HS 

(13) -Q + -R 12 Trans 

(14) Q + -R 7 v+ 
(15) -R 13,14 Spec Dil 

(16) Q 3,11 +E 

(17) P & Q 11,16 &I 
(18) ( P & Q ) & - R  15,17 &I 
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Exercise 1.6.3 

S + ((R & Q) v (-R & -Q)) v -P F P + -Q 

P & Q + (R v S) & -(R & S) A 

R & Q + S  A 

S + ((R & Q) v (-R & -Q)) v -P A 

P A [for +I] 

Q A [for RAA] 
P & Q 4,s &I 
(R v S) & -(R & S) 1,6 +E 

R v S 7 &E 
-(R & S) 7 &E 

R + -S 9 Neg+ 
R A 

R & Q  5,11 &I 
S 2,12 +E 

R + S  13 +T(ll) 
-R 10,14 IA 

S 8,15 vE 

((R & Q) v (-R & -Q)) v -P 3,16 +E 

(R & Q) v (-R & -Q) 4,17 vE 

-R + Q 5 TC 

-(-R & -Q) 19 Neg+ 

R & Q  18,20 vE 
R 21 &E 

-Q 15,22 RAA (5) 
P + -Q 22 +I (4) 

T2 F P v - P  
(i) primitive rules only 

1 (1) -(P v -P) 
2 (2) P 

2 (3) P v -P 

A [for RAA] 
A [for RAA] 

2 vI 
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(ii) derived rules allowed 
1 (1) -P 

(2) -P + -P 
(3) P v -P 

T4 t P + ( Q + P )  
(i) primitive rules only 

1 (1) P 
2 (2) Q 
1 (3) Q + P  

(4) p + (Q + P) 

(ii) derived rules allowed 
1 (1) P 
1 (2) Q + P  

(3) p + (Q + P) 

T5 (p + Q) V (Q + p) 
(i) primitive rules only 
1 (1) -((P + Q) v (Q + PI) 

2 (2) P + Q  
2 (3) (P + Q) v (Q + P) 
1 (4) -(P + Q) 
5 (5) -P 
6 (6) P 
7 (7) -Q 
5,6 (8) Q 
5 (9) P + Q  
1 (10) p 

1 I (11) Q 
1 (12) Q + P  
1 (13) ( P + Q ) v ( Q + P )  

(14) ( P + Q ) v ( Q + P )  

1,3 RAA (2) 
4 VI 

1,5 RAA (I)  

A [for +I] 
A [for +I] 
1 +I (2) 
3 +I (I) 

A [for RAA] 

A [for RAA] 
2 VI 
1,3 RAA (2) 
A [for RAA] 
A [for +I] 
A [for RAA] 
5,6 RAA (7) 

8 +I (6) 
4,9 RAA (5) 

A [for +I] 
10 +I (I I) 
12 VI 

1,13 RAA (I)  
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(ii) derived rules allowed 

1 (1) -((P + Q) v (Q + PI) 

1 (2) -(P + Q) & -(Q + P) 

1 (3) -(P + Q) 

1 (4) -(Q + P) 

1 (5) P & -Q 

1 (6) Q & -P 
1 (7) P 
1 (8) -P 

(9) (P + Q) v (Q + P) 

T8 F -(P - Q) - (-P - Q) 
(i) primitive rules only 

1 (1) -(P e Q) 

2 (2) -P 
3 (3) -Q 
2 (4) -Q + -P 

5 (5) P 

2,3 (6) -P 
2,5 (7) Q 
2 (8) P + Q  
3 (9) -P + -Q 

10 (10) Q 
11 (11) -P 

3,11 (12) -Q 
3,lO (13) P 

3 (14) Q + P  

2,3 (15) P- Q 
1 2  (16) Q 
1 (17) - P + Q  

10 (18) P + Q  
5 (19) Q + P  
$10 (20) P e Q  
1,lO (21) -P 

1 (22) Q + -P 

1 (23) -P H Q 

(24) -(P e Q) + (-P e Q) 
25 (25) -P H Q 

A 

1 DM 

2 &E 

2 &E 

3 Neg + 
4 Neg + 
5 &E 
6 &E 

7,8 RAA (I)  

A [for +I] 

A [for +I] 
A 

2 +I (3) 

A [for +I] 

3,4 +E 
5,6 RAA (3) 

7 +I (5) 
3 +I (2) 

A [for +I] 
A [for RAA] 

9,11 +E 
10,12 RAA (11) 

13 +I (10) 

8,14 e I  
1,15 RAA (3) 

16 +I (2) 

10 +I (5) 

5 +I (10) 
18,19 e I  
1,20 RAA (5) 

21 +I (10) 

17,22 -1 

23 +I (1) 

A [for +I] 



Answers to Chapter 1 Exercises 

T9 F ((P + Q) + P) + P 
(i) primitive rules only 

1 (1) (P + Q) + p 
2 (2) -P 

3 (3) P + Q  

1,3 (4) P 

1 2  (5) -(P + Q) 
6 (6) P 
7 (7) -Q 
2,6 (8) Q 
2 (9) P + Q  
1 (10) p 

(11) ( ( P + Q ) + P ) + P  

(ii) derived rules allowed 
1 (1) -(((P + Q) + P) + P) 

1 (2) ((P + Q) + P) & -P 

1 (3) (P + Q) + P 
1 (4) -P 

1 (5) -(P + Q) 

1 (6) P & -Q 
1 (7) P 

(8) ((P + Q) + P) + P 

25 e E  

25 e E  

A [for RAA] 

28 e E  

28 HE 

10,30 +E 

10,27 +E 
31,32 RAA (10) 

5,29 +E 
33,34 RAA (5) 

26,35 +E 

33,36 RAA (28) 

37 +I (25) 

24.38 -1 

A [for +I] 
A [for RAA] 

A 

1,3 +E 

2,4 RAA (3) 

A [for +I] 
A [for RAA] 
2,6 RAA (7) 

8 +I (6) 
5,9 RAA (2) 

10 +I (1) 

A 

1 Neg + 
2 &E 
2 &E 

3,4 MTT 

5 Neg + 
6 &E 

4,7 RAA (I)  
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TI0 F ( P + Q ) v ( Q + R )  
(i) primitive rules only 

1 (1) -((P + Q) v (Q + R)) 

2 (2) (P + Q) 

2 (3) (P + Q) v (Q + R) 

1 (4) -(P + Q) 

5 (5) Q 
6 (6) -R 
7 (7) P 

5 (8) P + Q  
1,5 (9) R 

1 (10) Q + R  

1 (11) ( P + Q ) v ( Q + R )  

(12) ( P + Q ) v ( Q + R )  

(ii) derived rules allowed 

1 (1) -(P + Q) 

1 (2) P & -Q 
1 (3) -Q 
1 (4) Q + R  

(5) -(P + Q) + (Q + R) 

(6) (P + Q) v (Q + R) 

(ii) alternative proof using derived rules 
1 (1) Q 
1 (2) P + Q  

1 (3) (P + Q) v (Q + R) 

(4) Q + (P + Q) v (Q + R) 
5 (5) -Q 
5 (6) Q + R  

5 (7) (P + Q) v (Q + R) 

(8) -Q + (P 4 Q) V (Q 4 R) 

(9) (P + Q) v (Q + R) 

A [for RAA] 

A 

2 VI 

1,3 RAA (2) 

A [for +I] 
A [for RAA] 
A 

5 +I (7) 
4,8 RAA (6) 

9 +I (5) 

10 VI 

1,11 RAA (I)  

A 

I Neg + 
2 &E 

3 FA 

4 +I (I) 

5 v+ 

A 

1 TC 

2 VI 

3 +I (1) 
A 

5 FA 

6 VI 

7 +I (5) 

4,8 Spec Dil 
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TI1 F(P-Q)-( -PM-Q) 
(i) primitive rules only 

1 (1) p - Q  

1 (2) P + Q  

1 (3) Q + P  

4 (4) -P 
5 (5) Q 
1,5 (6) P 
1,4 (7) -Q 
1 (8) -P + -Q 

9 (9) -Q 
10 (10) p 

l,lO (11) Q 
1 3  (12) -P 
1 (13) -Q+-P 

1 (14) -PH-Q 

(15) (P - Q) + (-P - -Q) 
16 (16) -P--Q 

16 (17) -P+-Q 

16 (18) -Q+-P 

19 (19) p 
20 (20) -Q 
16,20 (21) -P 
16,19 (22) Q 
16 (23) P + Q 
24 (24) Q 
25 (25) -P 

16,25 (26) -Q 
16,24 (27) P 

16 (28) Q + P 
16 (29) P - Q 

(30) (-p - -Q) + (P - Q) 

(31) (P-Q)-(-P--Q) 

(ii) derived rules allowed 

1 (1) p - Q  

1 (2) Q - p  

1 (3) -P H -Q 

A [for +I] 

I e E  

I e E  

A [for +I] 
A [for RAA] 

3,5 +E 
4,6 RAA (5) 

7 +I (4) 

A [for +I] 
A [for RAA] 

2,10 +E 
9,11 RAA (10) 

12 +I (9) 

8,13 -1 
14 +I (1) 

A [for +I] 

16 e E  

16 e E  

A [for +I] 
A [for RAA] 

18,20 +E 
19,2 1 RAA (20) 

22 +I (19) 

A [for +I] 
A [for RAA] 

17,25 +E 
24,26 RAA (25) 

27 +I (24) 

23,28 -1 

29 +I (16) 

15.30 -1 

A 

1 Comm 

2 Bitrans 
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T12 t ( - P + Q ) & ( R + Q ) - ( P + R ) + Q  
(i) primitive rules only 
1 (1) (-P + Q) & (R + Q) 

1 (2) - P + Q  

1 (3) R + Q  
4 (4) P + R  
5 (5) -Q 
6 (6) -P 

1,6 (7) Q 
1,5 (8) P 

1,4,5 (9) R 

(10) Q 
1,4 (11) Q 
1 (12) ( P + R ) + Q  

(13) (-P + Q) & (R + Q) + ((P + R) + Q) 
14 (14) ( P + R ) + Q  
15 (15) -P 
16 (16) p 
17 (17) -R 
15,16 (18) R 
15 (19) P + R  

14,15 (20) Q 
14 (21) -P+ Q 
22 (22) R 
22 (23) P 4 R 

14,22 (24) Q 
14 (25) R + Q 
14 (26) (-P + Q) & (R + Q) 

(27) ((P + R) + Q) + (-P + Q) & (R + Q) 
(28) (-P + Q) & (R + Q) e (P + R) + Q 

3 +I (2) 
A 
5 Bitrans 

6 Comm 

7 +I (5) 
4,8 -1 

A 

I &E 
1 &E 

A [for +I] 
A [for RAA] 
A 

2,6 +E 
5,7 RAA (6) 

4,8 +E 
3,9 +E 
5,10 RAA (5) 
1 1 +I (4) 

12 +I (1) 
A 
A 
A 
A 
15,16 RAA (17) 
18 +I (16) 
14,19 +E 

20 +I (15) 
A 

22 4 1  (16) 

14,23 +E 
24 +I (22) 
21,25 &I 
26 +I (14) 

13,27 -1 
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(ii) derived rules allowed 

1 (1) (-P + Q) & (R + Q) 
1 (2) - P + Q  

1 (3) R + Q  
4 (4) P + R  

1,4 (5) P + Q  
1,4 (6) Q 
1 (7) (P + R) + Q 

(8) (-P + R) & (R + Q) + ((P + R) + Q) 

9 (9) (P + R) + Q 
10 (10) -P 
10 (11) P + R  

9,10 (12) Q 
9 (13) - P + Q  
14 (14) R 

14 (15) P +R 
9,14 (16) Q 

9 (17) R +  Q 
9 (18) ( - P + Q ) & ( R + Q )  

(19) ( ( P + R ) + Q ) + ( - P + Q ) & ( R + Q )  
(20) (-P + Q) & (R + Q) e (P + R) + Q 

T14 t P e P v P  
1 (1) P 
1 (2) P v P  

(3) P + P v P  
4 (4) P v P  
5 (5) -P 
4 s  (6) P 

A 

1 &E 

I &E 
A 

3,4 HS 
2,5 Spec Dil 

6 +I (4) 
7 +I (I) 

A 
A 

10 FA 

9,11 +E 
12 +I (10) 
A 

14 TC 
9,15 +E 

16 +E (14) 
13,17 &I 
18 +I (9) 

8.19 e I  

A 

I VI 

2 +I (1) 
A 
A [for RAA] 

4,5 vE 
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TI7 F ( P - Q ) & ( R - S ) + ( P v R - Q v S )  
(i) primitive rules only 

1 (1) ( P e Q ) & ( R e S )  

1 (2) p - Q  

1 (3) P + Q  

1 (4) Q + P  
1 (5) R-S  

1 (6) R + S  

1 (7) S + R  

8 (8) P v R  

9 (9) -(Q v S) 
10 (10) Q 
10 (11) Q v S  
9 (12) -Q 
13 (13) p 

1,13 (14) Q 
1,9 (15) -P 

1,8,9 (16) R 

1,8,9 (17) S 

l,8,9 (18) Q v S  

1 3  (19) Q v S 
1 (20) P v R + Q v S  

2 1 (21) Q v S 
22 (22) -(P v R) 
23 (23) p 

23 (24) P v R 
22 (25) -P 
26 (26) Q 
1,26 (27) P 
1,22 (28) -Q 
1,21,22 (29) S 

1,21,22 (30) R 

1,21,22 (31) P v R  

1,21 (32) P v R 

5,6 RAA (5) 

7 +I (4) 

3,8 e I  

A 

1 &E 

2 ME 

2 e E  

1 &E 

5 e E  

5 ME 

A [for +I] 

A [for RAA] 
A 

10 vI 
9,11 RAA (10) 
A 

3,13 +E 
12,14 RAA (13) 

8,15 vE 

6,16 +E 

17 VI 

9,18 RAA (9) 

19 +I (8) 

A 

A 
A 

23 VI 
22,24 RAA (23) 
A 

4,26 +E 
25,27 RAA (26) 

21,28 vE 

7,29 +E 

30 VI 

22,3 1 RAA (22) 
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(ii) derived rules allowed 

1 (1) (P - Q) (R - S) 

1 (2) P e Q  

1 (3) R-S 

4 (4) P v R  

1 (5) P + Q  

1 (6) R + S  

1,4 (7) Q v S  
1 (8) P v R + Q v S  

9 (9) Q v S  

1 (10) Q + P  

1 (11) S + R  

1,9 (12) P v R  
1 (13) Q v S + P v R  

1 (14) P v R - Q v S  

(15) ( P e Q ) & ( R e S ) + ( P v R e Q v S )  

A 

I &E 

1 &E 

A 

2 e E  

3 ME 

4,5,6 Corn Dil 

7 +I (4) 
A 

2 e E  

3 e E  

9,10,11 Corn Dil 

12 +I (9) 

8,13 -1 

14 +I (1) 

T19 t (P e Q) + ((R + P) e (R + Q)) & ((P + R) e (Q + R)) 
(i) primitive rules only 

1 (1) p - Q  A [for +I] 
1 (2) P + Q  I e E  

1 (3) Q + P  I ME 

4 (4) R + P  A [for +I] 

5 (5) R A [for +I] 

4,5 (6) P 4,5 +E 

1,4,5 (7) Q 2,6 +E 

1,4 (8) R + Q  7 +I (5) 
1 (9) (R + P) + (R + Q) 8 +I (4) 

10 (10) R +  Q A 
1 1  (11) R A 

l0,ll (12) Q 10,ll +E 

11011 (13) P 3,12 +E 

1,10 (14) R + P  13 +I (1 1) 
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(R + Q) + (R + P) 14 +I (10) 

(R + P) - (R + Q) 9,15 -1 
P + R  A 

Q A 
P 3,18 +E 

R 17,19 +E 

Q + R  20 +I (18) 

(P + R) + (Q + R) 21 +I (17) 

Q + R  A 
P A 

Q 2,24 +E 
R 23,25 +E 

P + R  26 +I (24) 

(Q + R) + (P + R) 27 +I (23) 

(P + R) - (Q + R) 22,28 -1 

((R + P) e (R + Q)) & ((P + R) e (Q + R)) 16,29 &I 

(p - Q) + 30 +I (I) 

((R + P) - (R + Q)) & ((P + R) - (Q + R)) 

(ii) derived rules allowed 

1 (1) p - Q  
1 (2) P + Q  
1 (3) Q + P  

4 (4) R + P  

1,4 (5) R + Q  

1 (6) (R + P) + (R + Q) 

7 (7) R + Q  
1,7 (8) R + P  

1 (9) (R + Q) + (R + P) 

1 (10) (R+P) - (R+Q)  
11 (11) P + R  

1,11 (12) Q + R 

1 (13) ( P + R ) + ( Q + R )  
14 (14) Q + R  
1,14 (15) P + R  

1 (16) ( Q + R ) + ( P + R )  
1 (17) ( P + R ) - ( Q + R )  
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T21 k ( P e Q ) + ( R v P e R v Q )  
(i) primitive rules only 

1 (1) p - Q  
1 (2) P + Q  
1 (3) Q + P  
4 (4) R v P  

5 (5) -(R v Q) 
6 (6) R 

6 (7) R v Q  
5 (8) -R 

4,5 (9) P 

(10) Q 
1,4,5 (11) R v Q  

1,4 (12) R V Q  
1 (13) R v P + R v Q  

14 (14) R v Q  
15 (15) -(R v P) 
16 (16) R 
16 (17) R v P  
15 (18) -R 

14,15 (19) Q 

1,14,15 (20) P 
1 , 1 4 5  (21) R V P  
1,14 (22) R v P  
1 (23) R v Q + R v P  
1 (24) R v P e R v Q  

(25) (P e Q) + (R v P e R v Q) 

(ii) derived rules allowed 

1 (1) P e Q  

1 (2) P + Q  
1 (3) Q + P  
4 (4) R v P  

A 

I e E  
I e E  
A 

A 
A 

6 VI 
5,7 RAA (6) 

4,8 vE 
2,9 +E 
10 VI 

5,11 RAA (5) 
12 +I (4) 

A 
A 
A 
16 VI 
15,17 RAA (16) 

14,18 VE 
3,19 +E 
20 vI 
15,21 RAA (15) 
22 +I (14) 

13,23 -1 
24 +I (1) 
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T27 t ( P + Q ) + Q e ( Q + P ) + P  
(i) primitive rules only 

1 (1) (P + Q) + Q 
2 (2) Q + P  
3 (3) -P 
4 (4) Q 
2,4 (5) P 
2,3 (6) -Q 
7 (7) P + Q  

1,7 (8) Q 
1,2,3 (9) -(P + Q) 
10 (10) p 

10 (11) P v Q  

3,10 (12) Q 

3 (13) P + Q 
1,2 (14) P 
1 (15) ( Q + P ) + P  

(1 6) ((P + Q) + Q) + ((Q + P) + P) 
17 (17) ( Q + P ) + P  

18 (18) P + Q  
19 (19) -Q 
20 (20) p 

18,20 (21) Q 
l8,19 (22) -P 

23 (23) Q + P 
17,23 (24) P 

A [for +I] 

A [for +I] 
A [for RAA] 
A 

2,4 +E 
3,5 RAA (4) 

A 

1,7 +E 

6,8 RAA (7) 
A 

10 VI 

3,11 vE 

12 +I (10) 
9,13 RAA (3) 

14 +I (2) 

15 +I (I) 

A [for +I] 

A [for +I] 
A [for RAA] 
A 

18,20 +E 
19,2 1 RAA (20) 

A 

17,23 +E 
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(ii) derived rules allowed 

1 (1) -(((P + Q) + Q) + ((Q + P) + PI) 
1 (2) ((P + Q) + Q) & -((Q + P) + P) 

1 (3) (P + Q) + Q 
1 (4) -((Q + P) + P) 
1 (5) (Q + P) & -P 

1 (6) Q + P  
1 (7) -P 

1 (8) P + Q  
1 (9) Q 
1 (10) p 

(11) ( ( P + Q ) + Q ) + ( ( Q + P ) + P )  
12 (1 2) -(((Q + P) + P) + ((P + Q) + Q))) 
12 (13) ((Q + P) + P) & -((P + Q) + Q) 
12 (14) ( Q + P ) + P  
12 (15) -((P + Q) + Q) 

12 (16) (P+Q)&-Q 
12 (17) P + Q  
12 (18) -Q 
12 (19) Q + P  
12 (20) p 

12 (21) Q 

(22) ((Q + P) + P) + ((P 4 Q) + Q) 

(23) (P + Q) + Q - (Q + P) + P 

22,24 RAA (23) 
A 
26 VI 

19,27 vE 
28 +I (26) 
25,29 RAA (19) 

30 +I (18) 
31 +I (17) 

16,32 -1 

A 
I Neg + 
2 &E 

2 &E 
4 Neg + 
5 &E 
5 &E 
7 FA 
3,8 +E 
6,9 +E 

7,10 RAA (1) 
A 

12 Neg + 
13 &E 

13 &E 
15 Neg + 
16 &E 
16 &E 
18 FA 
14,19 +E 

17,20 +E 
18,21 RAA (12) 

11,22 -1 
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T30 F (P & Q) v (R & S) ((P v R) & (P v S)) & ((Q v R) & (Q v S)) 
(i) primitive rules only 

1 (1) (P & Q) v (R & S) A [for +I] 

2 (2) -(P v R) A [for RAA] 
3 (3) -(P v S) A [for RAA] 
4 (4) -P A 
5 (5) P Q A 
5 (6) P 5 &E 
4 (7) -(P & Q) 4,6 RAA (5) 

1,4 (8) R & S 1,7 vE 
1,4 (9) R 8 &E 
1,4 (10) S 8 &E 

1,4 (11) P v R  9 VI 
1 2  (12) p 2,11 RAA (4) 

1 2  (13) P v R  12 VI 

1 (14) P V R  2,13 RAA (2) 

1,4 (15) P v S  10 VI 
1,3 (16) p 3,15 RAA (4) 

1,3 (17) P v S 16 VI 

1 (18) P v S 3,17 RAA (3) 

1 (19) ( P v R ) & ( P v S )  14,18 &I 

20 (20) -(Q v R) A [for RAA] 

2 1 (21) -(Q v S) A [for RAA] 
22 (22) -Q A 

5 (23) Q 5 &E 
22 (24) -(P & Q) 22,23 RAA (5) 

1,22 (25) R & S 1,24 vE 
1,22 (26) R 25 &E 
1,22 (27) S 25 &E 

1,22 (28) Q v R 26 VI 
120  (29) Q 20,28 RAA (22) 

1,20 (30) Q v R 28 VI 

1 (31) Q v R  20,30 RAA (20) 

1,22 (32) Q v S 27 VI 
121  (33) Q 21,32 RAA (22) 

1,21 (34) Q v S  33 VI 

1 (35) Q v S 21,34 RAA (21) 

1 (36) (Q v R) & (Q v S) 30,35 &I 
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((P v R) & (P v S)) & ((Q v R) & (Q v S)) 
( P & Q ) v ( R & S ) +  

((P v R) & (P v S)) & ((Q v R) & (Q v S)) 
((P v R) & (P v S)) & ((Q v R) & (Q v S)) 
(P v R) & (P v S) 

(Q v R) & (Q v S) 
P v R  

P v S  

Q v R  
Q v S  

-((P & Q) v (R & S)) 
P 
Q 
P Q 
(P & Q) v (R & S) 
-Q 
R 

S 
R & S 

(P & Q) v (R & S) 
-P 
R 

S 
R & S  

(P & Q) v (R & S) 
(P & Q) v (R & S) 
((P v R) & (P v S)) & ((Q v R) & (Q v S)) + 

(P & Q) v (R & S) 
(P & Q) v (R & S) H 

((P v R) & (P v S)) & ((Q v R) & (Q v S)) 

(ii) derived rules allowed 
1 (1) (P & Q) v (R & S) 
1 (2) ((P Q) v R) ((P & Q) v S) 

1 (3) (P & Q) v R 
1 (4) (P & Q) v S 
1 (5) (P v R) & (Q v R) 

1 (6) (P v S) & (Q v S) 

A [for +I] 

39 &E 
39 &E 
40 &E 

40 &E 
41 &E 

41 &E 

A [for RAA] 
A 
A 
47,48 &I 
49 VI 
46,50 RAA (48) 
44,51 vE 
45,51 vE 
52,53 &I 
54 vI 
46,55 RAA (47) 
42,56 vE 
43,56 vE 
57,58 &I 

59 v1 
46,60 RAA (46) 
61 +I (39) 

A 
1 Dist 

2 &E 
2 &E 

3 Dist 

4 Dist 
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P v R  
P v S  
(P v R) & (P v S) 

Q v R  

Q v S  
(Q v R) & (Q v S) 
((P v R) & (P v S)) & ((Q v R) & (Q v 9 )  
(P & Q) v (R & S) + 
((P v R) & (P v S)) & ((Q v R) & (Q v S)) 

((P v R) & (P v S)) & ((Q v R) & (Q v 9 )  
(P v R) & (P v S) 

(Q v R) & (Q v S) 
P v R  

P v S  

Q v R  

Q v S  

(P v R) & (Q v R) 

(P v S) & (Q v S) 
(P & Q) v R 
(P & Q) v S 
((P & Q) v R) & ((P & Q) v S) 

(P & Q) v (R & S) 
((P v R) & (P v S)) & ((Q v R) & (Q v 9 )  + 

(P & Q) v (R & S) 
( P & Q ) v ( R & S ) e  

((P v R) & (P v S)) & ((Q v R) & (Q v 9 )  

A 

15 &E 

15 &E 

16 &E 
16 &E 

17 &E 

17 &E 

18,20 &I 
19,21 &I 
22 Dist 

23 Dist 

24,25 &I 

26 Dist 
27 +I (15) 

T3 1 F (P v Q) & (R v S) H ((P & R) v (P & S)) v ((Q & R) v (Q & S)) 

(i) primitive rules only 
1 (1) (P v Q) & (R v S) A [for +I] 

2 (2) -(((P & R) v (P & S)) v ((Q & R) v (Q & S))) A [for RAA] 
3 (3) P & R  A 

3 (4) (P & R) v (P & S) 3 VI 

3 (5) ((P & R) v (P & S)) v ((Q & R) v (Q & S)) 4 vI 
2 (6) -(P & R) 2,5 RAA (3) 
7 (7) P & S  A 
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(P & R) v (P & S) 

((P & R) v (P & S)) v ((Q & R) v (Q & S)) 
-(P & S) 

Q & R  

( Q & R ) v ( Q & S )  
((P & R) v (P & S)) v ((Q & R) v (Q & S)) 
-(Q & R) 
Q & S  

( Q & R ) v ( Q & S )  
((P & R) v (P & S)) v ((Q & R) v (Q & S)) 
-(Q & S) 

P v Q  
R v S  
P 
R 
P & R  
-R 

S 
P & S  
-P 

Q 
Q & R  
-R 
S 

Q & S  

((P & R) v (P & S)) v ((Q & R) v (Q & S)) 
(P v Q) & (R v S) + 
((P & R) v (P & S)) v ((Q & R) v (Q & S)) 

((P & R) v (P & S)) v ((Q & R) v (Q & S)) 
-(P v Q) 
(P & R) v (P & S) 
P & R  
P 

P v Q  
-(P & R) 

P & S 
P 

P v Q  
-((P & R) v (P & S)) 

7 VI 
8 VI 
2,9 RAA (7) 
A 
11 VI 
12 VI 
2,13 RAA (I I) 
A 
15 VI 

16 VI 
2,17 RAA (15) 
1 &E 
1 &E 
A 
A 
2 1,22 &I 
6,23 RAA (22) 
20,24 vE 
21,25 &I 
10,26 RAA (21) 
19,27 vE 
22,28 &I 
14,29 RAA (22) 
20,30 vE 
28,3 1 &I 
18,32 RAA (2) 

33 +I (1) 

A for +I 

A [for RAA] 
A 
A 
38 &E 

39 VI 
36,40 RAA (38) 
37,41 vE 
42 &E 
43 VI 

36,44 RAA (37) 
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(ii) derived rules allowed 

1 (1) (P v Q) & (R v S) 
1 (2) (P & (R v S)) v (Q & (R v S)) 
3 (3) P & (R v S) 

35,45 vE 
A 
47 &E 
48 VI 
36,49 RAA (47) 
46,50 vE 
51 &E 
52 VI 

36,53 RAA (36) 
A [for RAAI 
A 
A 
57 &E 

58 vI 
55,58 RAA (57) 

56,60 vE 
61 &E 

62 VI 

55,63 RAA (56) 
35,64 vE 
A 
66 &E 

67 vI 
55,68 RAA (66) 

65,69 vE 
70 &E 
71 vI 

55,72 RAA (55) 
54,73 &I 
74 4 1  (35) 

A 
1 Dist 
A 
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3 Dist 

4 +I (3) 
A 

6 Dist 

7 +I (6) 
2,5,8 Com Dil 

9 +I (1) 

A 

A 

12 Dist 
13 &E 

13 &E 
14 VI 

15,16 &I 

17 +I (12) 
A 

19 Dist 
20 &E 
20 &E 

21 VI 
22,23 &I 
24 +I (19) 

11,18,25 SimDil 

26 +I (1 1) 

T32 t (P + Q) & (R + S) ((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) 

(i) primitive rules only 

1 (1) (P + Q) & (R + S) A [for +I] 

2 (2) -(((-P & -R) v(-P & S)) v((Q & -R) v(Q & S))) A [for RAA] 

1 (3) P + Q  1 &E 

1 (4) R + S  I &E 
5 (5) (-P & -R) v (-P & S) A 
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((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) 5 VI 

-((-P & -R) v (-P & S)) 2,6 RAA (5) 

( Q & - R ) v ( Q & S )  A 
((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) 8 VI 

-((Q & -R) v (Q S)) 2,9 RAA (8) 
(-P & -R) A 

(-P & -R) v (-P & S) I1 VI 
-(-P & -R) 7,12 RAA (I I) 
- P & S  A 

(-P & -R) v (-P & S) 14 VI 
-(-P & S) 7,15 RAA (14) 
Q&-R A 

(Q & -R) v (Q & S) 17 VI 

-(Q & -R) lO,l8 RAA (17) 

Q & S  A 

(Q & -R) v (Q & S) 20 VI 

-(Q S) 10,2 1 RAA (20) 
-P A 
-R A 
-P & -R 23,24 &I 
R 13,25 RAA (24) 

S 4,26 +E 
- P & S  23,27 &I 
P 16,28 RAA (23) 

Q 3,29 +E 
Q&-R 24,30 &I 
R 19,3 1 RAA (24) 

S 4,32 +E 

Q & S  30,33 &I 
((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) 22,34 RAA (2) 

(P + Q) & (R + S) + 35 +I (1) 
((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) 

((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) A [for +I] 

P A [for +I] 

-Q A [for RAA] 
Q&-R A 
Q 40 &E 
-(Q -R) 39,4 1 RAA (40) 
Q & S  A 
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Q 43 &E 
-(Q & S) 39,44 RAA (43) 

( Q & - R ) v ( Q & S )  A 

Q & s  42,46 vE 

-((Q & -R) v (Q S)) 45,47 RAA (46) 
(-P & -R) v (-P & S) 37,48 VE 
-P & -R A 
-P 50 &E 
-(-P & -R) 38,51 RAA (50) 

- P & S  49,52 VE 
-P 53 &E 

Q 38,54 RAA (39) 
P + Q  55 +I (38) 
R A [for +I] 
-S A [for RAA] 
Q & S  A 
S 59 &E 
-(Q & S) 58,60 RAA (59) 

( Q & - R ) v ( Q & S )  A 
Q&-R 61,62 VE 
-R 63 &E 

-((Q & -R) v (Q & 9 )  57,64 RAA (62) 

(-P & -R) v (-P & S) 37,65 VE 
-P & -R A 
-R 67 &E 
-(-P & -R) 57,68 RAA (67) 

- P & S  66,69 VE 
S 70 &E 
S 58,71 RAA (58) 
R + S  72 +I (57) 

(P + Q) (R + S) 56,73 &I 
((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) + 74 +I (37) 

(P + Q) & (R + S) 
(P + Q) & (R + S) e 36,75 e I  
((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) 

(ii) derived rules allowed 

1 (1) (P + Q) & (R + S) 
1 (2) P + Q  
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R + S  I &E 
-P v Q 2 v+ 
- R v S  3 V+ 

(-P v Q) & (-R v S) 4,5 &I 

(-P & (-R v S)) v (Q & (-R v S)) 6 Dist 
-P & (-R v S) A 

(-P & -R) v (-P & S) 8 Dist 

-P & (-R v S) + (-P & -R) v (-P & S) 9 +I (8) 
Q & (-R v S) A 

(Q & -R) v (Q & S) I I Dist 

Q & (-R v S) + (Q & -R) v (Q & S) 12 +I (1 1) 

((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) 7,10,13 Sim Dil 

(P + Q) & (R + S) + 14 +I (I) 
((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) 

((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) A 

(-P & -R) v (-P & S) A 

-P & (-R v S) 17 Dist 

(-P & -R) v (-P & S) + -P & (-R v S) 18 +I (17) 

( Q & - R ) v ( Q & S )  A 
Q & (-R v S) 20 Dist 

( Q & - R ) v ( Q & S ) + Q & ( - R v S )  21 +I (20) 

(-P & (-R v S)) v (Q & (-R v S)) 16,19,22 ComDil 

(-P v Q) & (-R v S) 23 Dist 

-P v Q 24 &E 

- R v S  24 &E 

P + Q  25 v+ 
R + S  26 v+ 

(P + Q) & (R + S) 27,28 &E 

((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) + 29 +I (16) 

(P + Q) (R + S) 
(P + Q) & (R + S) e 15,30 e I  
((-P & -R) v (-P & S)) v ((Q & -R) v (Q & S)) 
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Chapter 2 

Exercise 2.1 

i 11 

P Q  P v ( - P v Q )  P Q  - ( P & Q ) v P  
T T  T F  T  T T F  T  T  
T F  T F  F  T F T  F  T  
F T  T T  T  F T T  F  T  
F F  T T  T  F F T F  T  

v vi 

P Q R  P v Q + R v - P  P Q R  R w - P v ( R & Q )  
T T T  T  T  F F  T T T  T F  T  T  
T T F  T  F  F F  T T F  T F  F  F  
T F T  T  T  T F  T F T  F F F  F  
T F F  T  F  F F  T F F  T F  F  F  
F T  T  T  T  T T  F T T  T T T  T  
F T  F  T  T  T T  F T F  F T T  F  
F F T  F  T  T T  F F T  T T T  F  
F F F  F  T  T T  F F F  F T T  F  

. . . 
vii vlll 

P Q  ( P & Q e Q ) + ( Q + P )  P Q  ( P e - Q ) e ( - P e - Q )  
T T  T T  T  T  T T  F F  F  F  T F  
T F  F T  T  T  T F  T T  F F  F T  
F T  F F  T  F  F T  T F  F T  F F  
F F  F T  T  T  F F  F T  F T  T T  
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ix 
P Q R  ( P - Q ) - ( P v R + ( - Q + R ) )  
T T  T  T  T  T T F T  
T T  F  T  T  T T F T  
T F  T  F  F  T T T T  
T F  F  F  T  T F T F  
F T T  F  F  T T F T  
F T F  F  F  F T F T  
F F  T  T  T  T T T T  
F F  F  T  T  F T T F  

X 

P Q R S  ( P & Q ) v ( R & S ) + ( P & R ) v ( Q & S )  
T T T T  T  T  T  T  T  T  T  
T T T F  T  T  F  T  T  T  F  
T T F T  T  T  F  T  F  T  T  
T T F F  T  T  F  F  F  F  F  
T F T T  F  T  T  T  T  T  F  
T F T F  F  F  F  T  T  T  F  
T F F T  F  F  F  T  F  F  F  
T F F F  F  F  F  T  F  F  F  
F T T T  F  T  T  T  F  T  T  
F T T F  F  F  F  T  F  F  F  
F T F T  F  F  F  T  F  T  T  
F T F F  F  F  F  T  F  F  F  
F F T T  F  T  T  F  F  F  F  
F F T F  F  F  F  T  F  F  F  
F F F T  F  F  F  T  F  F  F  
F F F F  F  F  F  T  F  F  F  

Exercise 2.2 

i VALID 
1 (1) P & - Q  A 

2 (2) p - Q  
1 (3) P 
1 2  (4) Q 
1 ( 5 )  -Q 
1 (6) -(P - Q) 

A [for RAA] 
I &E 
2,3 BP 
1 &E 

4,5 RAA (2) 
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INVALID 
P:T Q:F R:T 

INVALID 
P:T Q:F R:F 

VALID 

(1) P v Q + R  
(2) P 

(3) P v Q  

(4) R 

(5) P + R  

INVALID 
P:T Q:T R:F 

VALID 

(1) (P + -P) + (-P + P) 
(2) -P 

(3) P + -P 
(4) - P + P  

(5) P 
(6) P 

INVALID 
P:T Q:F R:T 

INVALID 
P:T Q:F R:T S:F 

INVALID 
P:F Q:F R:F 

INVALID 
P:T Q:F R:T S:F 

VALID 

(1) P v Q  

(2) P 

(3) - P + R  

A 

A [for +I] 

2 vI 
1,3 +E 

4 +I (2) 

A 
A [for RAA] 

2 TC 
1,3 +E 

2,4 +E 
2,5 RAA (2) 

A 

A [for +I] 
2 FA 
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xiv 

1 
2 
3 
4 

1 2  

1,2,4 
1,2,3 

VALID 

(1) P e ( R + P v - Q )  

(2) -(R + P v Q) 

(3) Q 
(4) p v Q 
(5) R + P v Q  
(6) -Q 

VALID 

(1) 

(2) 

(3) 
(4) 
(5) 
(6) 

(7) 

(8) 

(9) 

VALID 

(1) P + ( Q & R + S )  
(2) P 
(3) -S 
(4) Q & R  

(5) Q & R + S  

(6) S 
(7) -(Q & R) 

3 +I (2) 

A [for +I] 

5 FA 

6 +I (5) 
1,4,7 Corn Dil 

A 

A 
A [for RAA] 

3 vI 

4 TC 
2,5 RAA (3) 

A 

A [for RAA] 

I Neg+ 
3 &E 
4 &E 
2,5 BP 

6 VI 

3 &E 

7,s RAA (2) 

A 
A 
A 
A [for RAA] 

1,2 +E 

4,5 +E 
2,6 RAA (4) 

INVALID 
P:F Q:F R:T 
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xvi INVALID 
P:T Q:F R:F S:F 

xvii VALID 

1 (1) 
2 (2) 

3 (3) 
4 (4) 
4 ( 5 )  
4 (6) 
3,4 (7) 
8 (8) 
8 (9) 
2 3  (10) 
1,2,8 (11) 
1,2,3,4,8 (12) 
1,2,3,4,8 (13) 
1,2,3,4 (14) 
1,2,3 (15) 

1,2,3 (16) 

xviii INVALID 
P:T Q:F R:F S:F 

Exercise 2.4.2 

i P:F Q:T 
11 P:T Q:F ... 
111 P:T Q:T R:F 
iv P:F Q:F R:T 
v P:T Q:F R:T 
vi P:F Q:F R:F S:T 
vi i P:T Q:F R:T S:F 
... 

vl11 P:F Q:F R:T 
ix P:T Q:T R:F S:T 
x P:T Q:F R:T S:F 
xi P:T Q:F R:F S:F 
xii P:F Q:T R:F S:T 
... 

XIII VALID 
1 (1) P + (-Q + -R & -S) 

A 
A 

A 
A [for +I] 

4 Neg+ 
5 Comm 
3,6 BP 
A [for RAA] 

8 VI 
2.9 MTT 

1,10 +E 

7,11 +E 
12 &E 
10,13 RAA (8) 
14 +I (4) 
15 v+ 
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xiv 
xv 
xvi 
xvii 

1 

2 

1 
1 
1 

1 

1 2  

1 2  
1 2  
1 2  

xviii 

1 
2 
2 

2 
2 

1 2  
1 2  
1 2  

1 2  
1 

P:F 
P:T 
P: T 
VALTD 

(1) 

(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

(8) 
(9) 
(10) 

VALTD 

(1) 
(2) 

(3) 

(4) 

(5) 
(6) 
(7) 
(8) 
(9) 
(10) 

A 
A 
A 

1,4 +E 
3,5 +E 
6 &E 
6 &E 
7 FA 

8 FA 

9,lO e I  
2,11 RAA (4) 

A 
A 

2 TC 

2 FA 

3,4 &I 
1,5 +E 
2,6 MTT 
7 DM 

8 Neg+ 

9 +I (2) 
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xix 

1 
2 
2 

1 2  
1 2  
1 

VALID 

(1) 
(2) 

(3) 
(4) 
(5) 
(6) 

(7) 

(8) 

(9) 
(10) 
(11) 

(12) 
(13) 

(14) 

P v - Q + - P & - Q  
P 
P v -Q 

-P & -Q 
-P 
-P 

((P v -Q) + (-P & -Q)) + -P 
-P 

P v -Q 

-Q 
-P & -Q 

( P v  -Q) + (-P & -Q) 
-P + ((P v -Q) + (-P & -Q)) 

((P v -Q) + (-P & -Q)) e -P 

VALID 

(1) Qe-Q 
(2) Q 
(3) -Q 
(4) -Q 
(5) Q 
(6) Q v (P H -P) 

(7) P e - P  

A [for +I] 
A [for RAA] 
2 vI 
2,3 +E 
4 &E 
2,5 RAA(2) 

6 +1(1) 

A [for +I] 
A [for +I] 

8,9 vE 
8,lO &I 
1 1 +1(9) 
12 +I@) 

7.13 e I  

A 
A 
1,2 BP 
2,3 RAA (2) 
1,4 BP 

5 vI 

4,6 vE 

Chapter 3 

Exercise 3.1.1 

i 
11 
... 
111 

iv 
v 
vi 
vi i 
. . . 

V l l l  

Not a wff 
Not a wff 
Universal 
Existential 
Not a wff 
Not a wff 
Universal 
Not a wff (but acceptable biconditional abbreviation given the parenthesis- 
dropping convention) 
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xii 
... 

X l l l  

xiv 
XV 

xvi 
xvii 
xviii 
xix 
XX 

xxi 
xxii 
xxiii 
xxiv 
XXX 

Negation 
Not a wff (but acceptable conditional abbreviation given the parenthesis- 
dropping convention) 
Not a wff (but acceptable conditional abbreviation given the parenthesis- 
dropping convention) 
Negation 
Not a wff 
Existential 
Not a wff 
Atomic sentence 
Not a wff 
Not a wff 
Not a wff 
Universal 
Not a wff 
Not a wff 
Negation 
Biconditional 
Not a wff 

Example WFF 
3zFz 

Exercise 3.1.2 
Open Formula 

i Fz 
11 None 
. . . 
111 Gcax 
iv GXY 

G Y ~  
(Gxy & Gyx) 

VY(GXY & GY x) 
v GXY 3y-VxGxy 

HY -Vy-Hy 
vi Ax VxAx 

Fxx 3xFxx 

vii FXY 

Hxyz 
Jz 
(Hxyz & Jz) 

Vz(Hxyz & Jz) 

(Fxy -3 Vz(Hxyz & Jz)) 
Vy(Fxy + Vz(Hxyz & Jz)) 
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. . . 
V l l l  

ix 

X 

xi 
xii 
... 

X l l l  

xiv 

xv 

Fxx 

Fxy 

V Y F ~ Y  
Hz 

Jx 
(Hz v Jx) 

3z(Hz v Jx) 

-3z(Hz v Jx) 
Fxx 

(Ha v Fxx) 

-(Ha v Fxx) 
None 
Fx 

Fx 

FYYY 
(FYYY & P) 
Fzx 
Hxyz 

(Fzy e Hxyz) 

Exercise 3.2 

Translation scheme is provided only where it is not obvious. 
alt: indicates an alternative, logically equivalent translation. 
amb: indicates non-equivalent rendering of an ambiguous sentence. 
inc! indicates a common, but incorrect answer. 

1 

inc! 

2 
inc ! 

3 

alt: 

inc! 

4 
alt: 

5 
alt: 

inc ! 

Vx(Dx + Mx) 

Vx(Dx & Mx) 

3x(Sx & Ox) 

3x(Sx + Ox) 

Vx(Fx + -Ex) 

-3x(Fx & Ex) 

-Vx(Fx + Ex) 

-Vx(Fx + Px) 

3x(Fx & -Px) 

Vx(Rx + -Ex) & Vx(Ax + -Ex) 

Vx(Rx v Ax + -Ex) 

Vx(Rx & Ax + -Ex) 
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6 
inc ! 
inc ! 

7 

inc! 

8 

alt: 

9 

alt: 
10 

alt: 

1 I 
12 

alt: 

inc ! 
13 

14 

15 
alt: 

16 

17 

18 

alt: 

19 
amb: 

20 
2 1 

22 

3x(Px & Ax) & 3x(Rx & Ax) 

3x((Px & Rx) & Ax) 
3x((Px v Rx) & Ax) 

Vx(Gx + Lx) 
Vx(Lx + Gx) 

Vx(Sx + (Px + Tx v Bx)) 

Vx(Sx & Px + Tx v Bx) 
Vx(Mx - Px) 

Vx((Mx + Px) & (Px + Mx)) 

Vx(Fx + -Wx v Ex) 
Vx(Fx & Wx + Ex) 

(3x(Ox & Cx) & 3x(0x & Mx)) & -3x(Cx & Mx) 

Vx(Ix + Px) 
Vx(-Px + -1x) 

Vx(Px + Ix) 
Vx(Ax + (-Wx + Nx)) 

Vx(Ax + (Nx + -Wx)) 

3x(Sx & (Px & Fx)) & -Vx(Px & Fx + Sx) 
3x(Sx & (Px & Fx)) & 3x((Px & Fx) & -Sx) 
Wa & Vx(Wx + Mx) + Ma 

Vx(Sx + (-Nx v Mx)) 
Vx(Ox & Ex + -Px) 
-3x((Ox & Ex) & Px) 

Vx(Px + -Hx) 

-Vx(Px + Hx) [possible reading in some regional dialects of English] 
-Vx(Px + Cx) 

Vx(Mx & Wx + Bx) 
3x((Mx & Wx) & Fx) 

Translation scheme I using single-place predicates only: 

Ta:  a is a trick 

Wa:  a is a whale 
Sa:  Shamu can do a 
Ca:  a can do a trick 
S: Shamu 
Note: Strictly we should use a letter from a-d for a name, but the use of s for 
Shamu is more perspicuous. 
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23 Vx(Tx + Sx) 
24 Vx(Tx + Sx) 

25 -Vx(Tx + Sx) 

26 Vx(Tx + -Sx) 
alternative translation that is not logically equivalent: -Cs 

27 3x(Wx & Cx) + Cs 

Vx(Wx & Cx + Cs) Note difference in scope. 
amb i: Vx(Wx + Cx) + Cs Less natural reading. 
amb ii: If any whale can do a trick, Shamu can do that same trick. 
This reading is not expressible using single-place predicates only. 

28 Vx(Wx + Cx) + Cs Note scope again. 

29 3x(Wx & Cx) + Vx(Wx + Cx) 

amb Vx(Wx + Cx) + Vx(Wx + Cx) This reading is less natural. 

23-29 Translation Scheme I1 using many-place predicates 
Ta: a is a trick 

Cap: a can do p 
Wa: a is a whale 
s: Shamu 

23 Vx(Tx + Csx) 
24 Vx(Tx + Csx) 

25 -Vx(Tx + Csx) 

alt: 3x(Tx & -Csx) 

26 Vx(Tx + -Csx) 

27 3xy((Wx & Ty) & Cxy) + 3z(Tz & Csz) 

alt: Vxy(((Wx & Ty) & Cxy) + 3z(Tz & Csz)) Scope! 
amb-i: Vx3y(Wx + Ty & Cxy) + 3z(Tz & Csz) 

amb-ii: Vxy(((Wx &Ty) & Cxy) + Csy) 
This is the ambiguous reading not expressible with the previous translation scheme. 

28 Vx3y(Wx + (Ty & Cxy)) + 3z(Tz & Csz) 

alt: Vx(Wx + 3y(Ty & Cxy)) + 3z(Tz & Csz) 
29 3xy((Wx & Ty) & Cxy) + Vx(Wx + 3y(Ty & Cxy)) 
amb: Vx3y(Wx + (Ty & Cxy)) + Vx(Wx + 3y(Ty & Cxy)) 
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32 3xAgx 
33 Vx Abx 

34 Vx Axb 
35 3xyAxy 

36 3xVyAxy 
amb: Vy3xAxy 

37 Vx3yAxy 

amb: 3yVxAxy 
38 VxyAxy 
39 VxAxx 

40 3xAxx 
4 1 Vx-Axx 

alt: -3xAxx 
42 3xVy-Axy 

alt: 3x-3yAxy 

Translation Scheme for 43-46. 

Sapy: a said P toy 

Pa: a is a person 

43 Vx(Px 4 3yVz(Pz + Sxyz)) 

amb: Vxy(Px & Py + 3zSxzy)) 
44 Vx(Px 4 3yz(Pz & Sxyz)) 

45 Vx(Px 4 3y(Py & -3zSxzy)) 

46 Vxy(Px & Py + -3zSxzy) 

47 

48 
alt: 
amb: 

49 
50 

amb: 

5 1 

52 

amb: 
53 

3xyz((Rx & (Cy & Sxy)) & (Dz & Lxz)) 
3x(Fx & Vy(Hy + Sxy)) 

3xVy(Fx & (Hy + Sxy)) 
3x(Fx & 3y(Hy & Sxy)) 
3x(Fx & Vy(My + Sxy)) 

3x(Wx & Vy(Fy & Exy + My)) 
3x(Wx & Vy(Exy + Fy & My)) 

3x(Wx & Vy(Fy & My + -Exy)) 
3xy((My & Fy) & Exy) + Vx(Sx + 3y((My & Fy) & Exy)) 
3xy((My & Fy) & Exy) + 3x(Sx & 3y((My & Fy) & Exy)) 

Vwxyz((Jw & Txw) & (Oy & Tzy) + Lxz) [Tab: a is p's tail] 
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-- alt: Vwxyz(((Jw & Tx) & Bxw) & ((Oy & Tz) & Bzy) + Lxz) [BaP: a belongs 

to PI 
54 Vx(3y(Cy & Sxy) + Ax) 

alt: Vxy(Cy & Sxy + Ax) 

55 Vuvxy(Bu & Pvu + (Hx & Pyx + Mvy)) & 

Vuvwx(0u & Evu + ((Mw v Bw) & Exw + Avx & -Mvx)) 
56 Ambiguous. 

i. The amount eaten by some whales is more than the amount eaten by any 
fish. 
Translation scheme: 

Aa: a is an amount (of food) 

Fa: a is a fish 

EaP: a eats p amount (of food) 

Gap: a is greater than p 

3x(Wx & 3y((Ay & Exy) & Vzw(Fz & Aw & Ezw + Gyw))) 

ii. The amount eaten by some whales is more than the amount eaten by all 
the fishes combined. 
Addition to translation scheme: 
a: the amount eaten by all the fishes combined 

3xy((Wx & Ay) & (Exy & Gya)) 

57 3x(Mx & Vy(My + (Gxy e -Gyy))) 

(Using identity) 

5 8 3x(Cx & Vy(Cy + y=x))  

5 9 3x x=p 
a l t :  3 x ( x = p & V y ( y = p + y = x ) )  

60 3xy(((Tx & Ty) & x # y) & (Ebx & Eby)) 

61 Vx(x#b + Exb) & -Ebb 

62 Vx(Dx + 3y((Ty & Byx) & Vz(Tz & Bzx + y=z)) 

Exercise 3.3.1 

i is an instance of v 
ii is an instance of vi 
ii is an instance ix 
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iv is an instance of i 
iv is an instance of iii 
x is an instance of ii 

Exercise 3.3.2 

3x(Gx & -Fx), Yx(Gx + Hx) t 3x(Hx & -Fx) 

(1) 3x(Cx & -Fx) 

(2) Yx(Gx + Hx) 

(3) Ga + Ha 

(4) Ga & -Fa 
( 5 )  Ca 

(6) Ha 
(7) -Fa 
(8) Ha & -Fa 

(9) 3x(Hx & -Fx) 
(10) 3x(Hx & -Fx) 

3x(Gx & Fx), Yx(Fx + -Hx) t 3x-Hx 

(1) 3x(Cx & Fx) 

(2) Yx(Fx + -Hx) 

(3) Fa + -Ha 
(4) Ca & Fa 
(5) Ca 
(6) Fa 
(7) -Ha 

(8) 3x-Hx 
(9) 3x-Hx 

A 
A 

2 YE 

A [for 3E on I ]  
4 &E 

3,5 +E 
4 &E 
6,7 &I 

8 31 

1,9 3E (4) 

A 

A 
2 YE 

A [for 3E on I] 
4 &E 
4 &E 
3,6 +E 

7 31 
1,s 3E (4) 
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+ 3y(Fy & Hy)) t Vx-Fx + -3zGz 

Vx(Gx + 3y(Fy & Hy)) 

Ga -+ 3y(Fy & Hy) 
Vx-Fx 
-Fa 
3zGz 

Ga 

~ Y ( F Y  & HY) 
Fa & Ha 
Fa 
-3zGz 
-3zGz 

-3zGz 
-3zGz 
Vx-Fx + -3zGz 

A 

1 VE 

A [for +I] 
3 VE 
A [for RAA] 
A [for 3E on 51 

2,6 +E 
A [for 3E on 71 
8 &E 
4,9 RAA (5) 

7,10 3E (8) 
5,11 3E (6) 
5,12 RAA (5) 
13 +I (3) 

+ Hx & Jx), Vx(Fx v -Jx 
Vx(Gx + Hx & Jx) 
Vx(Fx v -Jx + Gx) 

G a + H a & J a  
Fa v -Ja + Ga 

Fa 
Fa v -Ja 

Ga 
Ha & Ja 
Ha 

Fa + Ha 
Vx(Fx + Hx) 

+ Gx) t Vx(Fx + Hx) 
A 
A 

1 VE 
2 VE 

A [for +I] 
5 VI 

4,6 +E 
3,7 +E 
8 &E 

9 +I (5) 
10 VI 

Vx(Gx & Kx e Hx), -3x(Fx & Gx) F Vx-(Fx & Hx) 

(1) Vx(Gx & Kx M Hx) A 
(2) -3x(Fx & Gx) A 
(3) Fa & Ha A [for RAA] 

(4) Ga&Ka-Ha 1 VE 
(5) Ha 3 &E 
(6) Ga & Ka 4,s BP 
(7) Ga 6 &E 



Answers to Chapter 3 Exercises 

(8) Fa 
(9) Fa & Ga 
(1 0) 3x(Fx & Gx) 
(1 1) -(Fa & Ha) 
(12) Vx-(Fx&Hx) 

Vx(-Gx v -Hx), Vx((Jx + Fx) + Hx) t 

(1) Vx(-Gx v -Hx) 
(2) Vx((Jx + Fx) + Hx) 

(3) 3x(Fx & Gx) 
(4) Fa & Ga 
(5) Fa 
(6) Ga 
(7) -Ga v -Ha 
(8) -Ha 

(9) Ja + Fa 
(10) (Ja + Fa) + Ha 
(11) Ha 

(12) -3x(Fx & Gx) 
(13) -3x(Fx & Gx) 
(14) -3x(Fx&Gx) 

-3x(-Gx & Hx), Vx(Fx + -Hx) t 

(1) -3x(-Gx & Hx) A 
(2) Vx(Fx + -Hx) 
(3) Fa + -Ha 

(4) Fa v -Ga 
(5) -(-Ga + -Ha) 
(6) -Ga & Ha 
(7) 3x(-Gx & Hx) 

(8) -Ga + -Ha 
(9) -Ha 
(10) Fav-Ga+-Ha 

(1 1) Vx(Fx v -Gx + -Hx) 

Vx(Fx e Gx) t VxFx e VxGx 

(1) Vx(Fx e Gx) 

3 &E 
7,8 &I 

9 31 
2,10 RAA (3) 
11 VI 

-3x(Fx & Gx) 

A 
A 
A [for RAA] 

A [for 3E on 31 
4 &E 
4 &E 
1 VE 
6,7 vE 

5 TC 
2 VE 

9,10 +E 
8 , l l  RAA (3) 
3,12 3E (4) 
3,13 RAA (3) 

A 

2 VE 

A [for +I] 
A [for RAA] 

5 Neg+ 
6 3 1  

1,7 RAA (5) 
3,4,8 Sim Dil 

9 +I (4) 
10 VI 
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VxFx 
Fa 
Fa Ga 
Ga 
VxGx 
VxFx + VxGx 

VxGx 

Ga 
Fa 
VxFx 
VxGx + VxFx 

VxFx e VxGx 

A [for +I] 
2 VE 
1 VE 
3,4 BP 

5 VI 
6 +I (2) 
A [for +I] 

8 VE 
4,9 BP 
10 VI 
1 1 +I (8) 

7,12 e I  

S102 3xFx + Vy(Gy + Hy), 3xJx + 3xGx F 3x(Fx & Jx) + 3zHz 

1 (1) 3xFx + Vy(Gy + Hy) A 

2 (2) 3xJx + 3xGx A 

3 (3) 3x(Fx & Jx) A [for +I] 

4 (4) Fa & Ja A [for 3E on 31 
4 (5) Fa 4 &E 
4 (6) Ja 4 &E 

4 (7) 3xFx 5 31 

4 (8) 3xJx 6 31 

1,4 (9) VY(GY + HY) 1,7 +E 

2,4 (10) 3xGx 2,8 +E 

1 I (11) Gb A [for 3E on 101 

1,4 (12) Gb + Hb 9 VE 

1,411 (13) Hb 11,12 +E 

1,411 (14) 3zHz 13 31 

1,2,4 (15) 3zHz 10,14 3E (1 1) 

1,2,3 (16) 3zHz 3,15 3E (4) 

1,2 (1 7) 3x(Fx & Jx) + 3zHz 16 +I (3) 

S 105 Vx(Fx v Hx + Gx & Kx), -Vx(Kx & Gx) F 3x-Hx 

1 (1) Vx(Fx v Hx + Gx & Kx) A 
2 (2) -Vx(Kx & Gx) A 
1 (3) F a v H a + G a & K a  1 VE 
4 (4) -3x-Hx A [for RAA] 
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-Ha 
3x-Hx 
Ha 
Fa v Ha 

Ga & Ka 
Ka & Ga 
Vx(Kx & Gx) 
3x-Hx 

+ VyGy) t VxFx v Vx-Fx 

Vx(Fx e VyGy) 
-VxFx 
-3x-FX 
-Fa 
3x-Fx 
Fa 
VxFx 
3x-Fx 

-Fa 
Fa e VyGy 

-VYGY 
-VYGY 
3xFx 

Fa 

VYGY 
VY GY 
-3xFx 
Fa 
3xFx 
-Fa 
Vx-Fx 
-VxFx + Vx-Fx 

VxFx v Vx-Fx 

Vx(Dx + Fx) t Vz(Dz + (Vy(Fy + Gy) + Gz)) 

(1) Vx(Dx + Fx) 
(2) Da 

A 
5 31 
4,6 RAA (5) 
7 VI 

3,8 +E 
9 Comm 
10 VI 
2,11 RAA (4) 

A 

A [for +I] 
A [for RAA] 
A 
4 3 I 
3,5 RAA (4) 

6 VI 
2,7 RAA (3) 

A [for 3E on 81 
1 VE 

9,10 BT 
8,11 3E (9) 

A [for RAA] 
A [for 3E on 131 

10,14 BP 
13,15 3E (14) 
12,16 RAA (13) 
A [for RAA] 
18 31 
17,19 RAA (18) 

20 VI 
2 1 +I (2) 

22 v+ 
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VxFx t 
(1) 
(2) 
(3) 
(4) 

(5) 
(6) 

(7) 
(8) 
(9) 

(10) 
(1 1) 
(12) 

(13) 
(14) 

(15) 
(16) 
(17) 
(18) 

(19) 
(20) 

(21) 
(22) 

VY(FY + GY) 
Da + Fa 

Fa + Ga 
Da + Ga 

Ga 
Vy(Fy + Gy) + Ga 
Da + (Vy(Fy + Gy) + Ga) 
Vz(Dz + (Vy(Fy + Gy) + Gz)) 

-3xGx H -(3x(Fx & Gx) & Vy(Gy + Fy)) 
VxFx 
-3xGx 

3x(Fx & Gx) & Vy(Gy + Fy) 
3x(Fx & Gx) 

Fa & Ga 
Ga 
3xGx 

3xGx 
-(3x(Fx & Gx) & Vy(Gy + Fy)) 

-3xGx + -(3x(Fx & Gx) & Vy(Gy + Fy)) 
3xGx 

Ga 

Fa 
Ga + Fa 
Vx(Gx + Fx) 
Fa & Ga 
3x(Fx & Gx) 
3x(Fx & Gx) & Vx(Gx + Fx) 

3x(Fx & Gx) & Vx(Gx + Fx) 
3xGx + 3x(Fx & Gx) & Vx(Gx + Fx) 
-(3x(Fx & Gx) & Vx(Gx + Fx)) + -3xGx 

-3xGx e -(3x(Fx & Gx) & Vy(Gy + Fy)) 

Vx(3yFyx + VzFxz) t Vyx(Fyx + Fxy) 

(1) Vx(3yFyx + VzFxz) 

(2) Fab 
(3) 3yFyb 

A 

A [for +I] 
A [for RAA] 
3 &E 
A [for 3E on 41 
5 &E 

6 31 
4,7 3E (5) 
2,8 RAA (3) 
9 +I (2) 

A [for +I] 
A [for 3E on 1 I] 
1 VE 

13 TC 
14 VI 
12,13 &I 

16 31 
15,17 &I 

I l , l8 3E (12) 

19 +I (1 1) 
20 Trans 

10,21 H I  

A 

A [for +I] 
2 31 
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1 (4) 3yFyb + VzFbz 
1 2  (5) VzFbz 
1 2  (6) Fba 

1 (7) Fab + Fba 

1 (8) Vx(Fax + Fxa) 
1 (9) Vyx(Fyx + Fxy) 

Vxy(Fxy + -Fyx) 

Vy(Fby + -Fyb) 

(Fbb + -Fbb) 
3xFxx 

Fbb 
-Fbb 
-3xFxx 

-3xFxx 
-3xFxx 

Vx x=x + 3xFx, Vx(-Fx v Gx) t- 3x(Fx & Gx) 

(1) Vx x=x + 3xFx 

(2) Vx(-Fx v Gx) 
(3) a=a 
(4) Vx x=x 

(5) 3xFx 
(6) Fa 

(7) -Fa v Ga 
(8) Ga 
(9) Fa & Ga 
(10) 3x(Fx&Gx) 
(1 1) 3x(Fx & Gx) 

A 

1 VE 
2 VE 

A [for RAA] 
A [for 3E] 

3,5 +E 
5,6 RAA (4) 

4,7 3E (5) 

4,s RAA (4) 

A 
A 
A [for RAA] 
1,3 =E 
2,4 RAA (3) 
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3x((Fx & Vy(Fy + y=x)) & Gx), -Ga F -Fa 

(1) 3x((Fx & Vy(Fy + y=x)) & Gx) 

(2) -Ga 
(3) (Fb & Vy(Fy + y=b)) & Gb 

(4) Fb & Vy(Fy + y=b) 

( 5 )  VY(FY + y=b) 
(6) Fa 
(7) Fa + a=b 

(8) a=b 
(9) Gb 
(10) Ga 
(11) -Fa 
(12) -Fa 

Vx3yGyx, Vxy(Gxy +-Gyx) F-3yVx(x#y + Gyx) 

(1) Vx3yGyx 
(2) Vxy(Gxy + -Gyx) 

(3) 3yVx(x+y + Gyx) 
(4) Vx(x+a + Gax) 
( 5 )  3yGya 

(6) Gba 
(7) Vy(Gay + -Gya) 

(8) Gab + -Gba 
(9) -Gab 
(10) b+a+Cab 
(1 1) b=a 
(12) Gaa 
(13) -Gaa 

(14) -3yVx(x#y + Gyx) 
(15) -3yVx(x#y + Gyx) 

(16) -3yVx(x#y + Gyx) 
(1 7) -3yVx(x+y + Gyx) 

A 
A 

A 
3 &E 

4 &E 
A 
5 VE 

6,7 +E 
3 &E 
8,9 =E 
2,10 RAA (6) 

1,11 3E(3) 

A 

A 
A [for RAA] 
A [for 3E] 

1 VE 
A [for 3E] 
2 VE 

7 VE 

6,s +E 
4 VE 
9,10 MTT 
6,11=E 
9,11=E 

12,13 RAA (3) 
5,14 3E (6) 

3,15 3E (4) 

3,16 RAA (3) 
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Exercise 3.4.3 

-VxPx F 3x-Px 

(1) -VxPx 
(2) -3x-Px 
(3) -Pa 
(4) 3x-Px 
(5) Pa 

(6) VxPx 
(7) 3x-Px 

3x-Px F -VxPx 

(1) 3x-Px 
(2) VxPx 
(3) -Pa 

(4) Pa 
(5) -VxPx 

(6) -VxPx 

A 
A 
A 

3 3 1  
2,4 RAA (3) 

5 VI 
1,6 RAA (2) 

A 

A 
A 

2 VE 
3,4 RAA (2) 
1,5 3E (3) 
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VxPx v VxQx t Vx(Px v Qx) 

(1) VxPx v VxQx 
(2) VxPx 
(3) Pa 

(4) Pa v Qa 

( 5 )  Vx(Px v Qx) 

(6) VxPx + Vx(Px v Qx) 

(7) VxQx 
(8) Qa 
(9) Pa v Qa 
(10) Vx(PxvQx) 
(11) VxQx+Vx(PxvQx) 

(12) Vx(Px v Qx) 

3xy(Px & Qy) i t  3xPx & 3xQx 

3xy(Px & Qy) t 3xPx & 3xQx 

(1) 3xy(Px & QY) 
(2) 3y(Pa & QY) 
(3) Pa & Qb 
(4) Pa 
( 5 )  Qb 

(6) 3xPx 
(7) 3xQx 
(8) 3xPx & 3xQx 

(9) 3xPx & 3xQx 
(10) 3xPx & 3xQx 

3xPx & 3xQx t 3xy(Px & Qy) 

(1) 3xPx & 3xQx 

(2) 3xPx 

(3) 3xQx 
(4) Pa 

A 

A 

2 VE 

3 vI 

4 VI 
5 +I (2) 

A 

7 YE 
8 VI 

9 VT 
10 +I (7) 
1,6,11 Sim Dil 
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S160 P + 3xQx i t  3x(P + Qx) 

(a) P + 3xQx k 3x(P + Qx) 

1 (1) P + 3xQx 

2 (2) -3x(P + Qx) 

3 (3) P + Qa 

3 (4) 3x(P 4 Qx) 

2 (5) -(P + Qa) 
2 (6) P & -Qa 
2 (7) P 

1 2  (8) 3xQx 
2 (9) -Qa 
10 (10) Qa 
10 (1 1) 3x(P 4 Qx) 

1,2 (12) 3x(P 4 Qx) 

1 (1 3) 3x(P 4 Qx) 

(b) 3x(P + Qx) F P + 3xQx 

1 (1) 3x(P 4 Qx) 
2 (2) P 
3 (3) P + Qa 

2,3 (4) Qa 
2 3  (5) 3xQx 

3 (6) P + 3xQx 

1 (7) P + 3xQx 

Exercise 3.4.2 

T40 t Vx(Fx + Gx) + (VxFx 4 VxGx) 

1 (1) Vx(Fx + Gx) 

2 (2) VxFx 

A 

A 

A 

3 31 
2,4 RAA (3) 

5 Neg+ 
6 &E 

1,7 +E 
6 &E 
A 
9,10 RAA (2) 

8 , l l  3E (10) 
2,12 RAA (2) 

A [for +I] 
A [for +I] 
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1 (3) Fa + Ga 
2 (4) Fa 

1 2  (5) Ga 
1 2  (6) VxGx 
1 (7) VxFx 4 VxGx 

(8) Vx(Fx + Gx) + (VxFx + VxGx) 

T42 t 3x(Fx v Gx) H 3xFx v 3xGx 

1 (1) 3x(Fx v Gx) 

2 (2 )  -(3xFx v 3xGx) 
2 (3) -3xFx & -3xGx 
2 (4) -3xFx 
2 (5) -3xGx 
2 (6) Vx-Fx 

2 (7) Vx-GX 
2 (8) -Fa 

2 (9) -Ga 
10 (10) F a v  Ga 
2,10 (11) Ga 

10 (1 2) 3xFx v 3xGx 

1 (1 3) 3xFx v 3xGx 

(14) 3x(Fx v Gx) + (3xFx v 3xGx) 

15 (1 5) 3xFx v 3xGx 
16 (16) 3xFx 

17 (17) Fa 
17 (18) Fa v Ga 
17 (19) 3x(Fx v Gx) 
16 (20) 3x(Fx v Gx) 

(21) 3xFx 4 3x(Fx v Gx) 

22 (22) 3xGx 

23 (23) Ga 
23 (24) Fa v Ga 
23 (25) 3x(Fx v Gx) 
22 (26) 3x(Fx v Gx) 

(27) 3xGx + 3x(Fx v Gx) 

15 (28) 3x(Fx v Gx) 

A [for +I] 

A [for RAA] 
2 DM 

3 &E 
3 &E 

4 QE 

5 QE 
6 VE 

7 VE 
A [for 3E on I] 
8,10 vE 
9,11 RAA (2) 
1,12 3E (10) 

13 +I (1) 
A [for 411 

A 
A [for 3E on 161 
17 VI 

18 31 

16,19 3E (17) 
20 +I (16) 

A 
A [for 3E on 221 

23 VI 
24 31  
22,25 3E (23) 

26 +I (22) 
15,21,27 Sim Dil 



Answers to Chapter 3 Exercises 

(29) 3xFx v 3xGx + 3x(Fx v Gx) 

(30) 3x(Fx v Gx) e 3xFx v 3xGx 

F (3xFx + 3xGx) + 3x(Fx + Gx) 

(1) 3xFx + 3xGx 

(2) -3x(Fx + Gx) 
(3) Vx-(Fx + Gx) 
(4) -(Fa + Ga) 
(5) Fa & -Ca 
(6) Fa 
(7) 3xFx 

(8) 3xGx 
(9) Ga 
(10) -Ga 
(1 1) 3x(Fx + Gx) 
(1 2) 3x(Fx + Gx) 

(13) 3x(Fx + Gx) 

(14) (3xFx + 3xGx) + 3x(Fx + Gx) 

t (VxFx e P) + 3x(Fx e P) 

(1) VxFx e P 

(2) -3x(Fx H P) 
(3) Vx-(Fx - P) 

(4) -(Fa - P) 
(5) P 
(6) VxFx 

(7) Fa 
(8) P + Fa 
(9) Fa + P 
(10) F a e P  

(11) -(Fa + P) 
(12) Fa&-P 
(13) Fa 
(14) -P 
(15) VxFx 
(16) P 
(1 7) 3x(Fx - P) 

A [for +I] 
A [for RAA] 

2 QE 
3 VE 
4 Neg+ 
5 &E 
6 31 

1,7 +E 
A [for 3E on 81 
5 &B 
9,10 RAA (2) 
8,11 3E (9) 
2,12 RAA (2) 

13 4 1  (I) 

A 
A 
2 QE 

3 YE< 
A 
1,5 BP 

6 VE 
7 +I (5) 
A 

8,9 *I 
4,10 RAA (9) 
1 1 Neg+ 
12 &E 
12 &E 
13 VI 
1,15 BP 
14,16 RAA (2) 
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Exercise 3.4.3 

1 Vxz(Px + Rxz) 
2 3yVz(Fy + Hyz & Jz) 
3 Vxy(Fxa + Gyaa) 
4 Vx3 y (-Fx + Hy) 

5 Vx3yVz-(Fyx + -Gzx) 

Chapter 4 

Exercise 4.1.1 

ia 
ib 
ic 
iia 
iib 
iic 
... 
ma 

iiib 
. . . 
l l l C  

iva 
ivb 
ivc 

va 
vb 

VC 

via 

vib 
vic 
viia 
viib 

viic 
viiia 
viiib 

Fa 
Fa & Fb 
Fa & Fb & Fc 
Fa & P 
(Fa v Fb) & P 

(Fa v Fb v Fc) & P 

Fa + Ga 
F a & F b + G a v G b  
F a & F b & F c + G a v G b v G c  

(Ca e P) v Ha 

((Ga - P) & (Gb - P)) v (Ha & Hb) 
((Ga - P) & (Gb - P) & (Gc H P)) v (Ha & Hb & Hc) 
Ha v Ga 
H a v G a v G b  

H a v G a v G b v G c  
Fa v Ha 
F a v H a v F b v H b  

F a v H a v F b v H b v F c v H c  
F a e  Fa& -Ha 

Fa & Fb - (Fa & -Ha) v (Fb & -Hb) 

Fa & Fb & Fc e (Fa & -Ha) v (Fb & -Hb) v (Fc & -He) 
-(Fa & Ga) 
-(Fa & Ga & Fb & Gb) 
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viiic -(Fa & Ga & Fb & Gb & Fc & Gc) 
ixa -(Fa & -Ga) 
ixb -((Fa & -(Ga & Gb)) & (Fb & -(Ga & Gb))) 
ixc -((Fa&-(Ga&Gb &Gc)) &(Fb&-(Ga& Gb &Gc)) &(Fc &-(Ga&Gb &Gc))) 
xa -(Ga -.Ha & -Fa) 

xb -(Ga & Gb H (Ha & -Fa) v (Hb & -Fb)) 
xc -(Ga & Gb & Gc H (Ha & -Fa) v (Hb & -Fb) v (He & -Fc)) 

Exercise 4.1.2 

ia T 
iia 
... 

F 
ma F 
iva T 
va F 
via T 
viia T 
viiia T 
ixa F 
xa F 

ib F 
iib T 
iiib T 
ivb T 
vb T 
vib T 
viib F 
viiib T 
ixb T 
xb T 

ic T 
iic 
... 

F 
l l l C  T 
ivc F 
vc T 
vie T 
viic T 
viiic T 
ixc F 
xc F 

Exercise 4.2 

11 U:{a,b} F:{a] G:{b] 

Fa v Fb + Ga v Gb t (Fa + Ga) & (Fb + Gb) 

. . . 
111 Same model as ii 

(Fa v Fb) & (Ga v Gb) t (Fa & Ga) v (Fb & Gb) 

iv Same model as i 

(Fa v Ga) v (Fb v Gb) t (Fa & Fb) v (Ga & Gb) 
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v 

vi 

vi i 

. . . 
V l l l  

ix 

X 

xi 

xi 

... 
X l l l  

xi 

xv 

xvi 

Same model as i 

(Fa + Ga) v (Fb + Gb) F (Fa v Fb) + (Ca v Gb) 

U:{a,b} F:{a,b} G:{a} 

(Fa + Ga) v (I% + Gb) t (Fa & Fb) + (Ga & Gb) 

Same model as i 

F a & F b e C a & G b t ( F a e G a ) & ( F b e G b )  

Same model as ii 

F a v F b e G a v G b t ( F a e C a ) & ( F b e G b )  

U: {a,b} F: {a} P is FALSE 

(Fa & Fb) e P t (Fa e P) & (Fb e P) 

U: {a,b} F: {a} P is TRUE 

(Fa v Fb) e P F (Fa e P) & (Fb e P) 

Same model as ix 

(Fa H P) v (I% H P) t (Fa v Fb) H P 

Same model as x 

(Fa H P) v (I% H P) t (Fa & Fb) H P 

U: {a,b} F: {a]  G: {a,b} H: {b} 

Fa v Fb e Ga & Gb, -((Fa + Ha) & (Fb + Hb)) t Ha v Hb +-Ga v -Gb 

U:{a) F:{a} G:{a} H:{a} 

Ga v -Ha, Ga & Fa F -Ha 
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xvii U:{a] F:{a] G:{ ] H:{a} 

F a & G a + H a , F a & H a t G a  

xviii U:{a,b} F:{a] G:{a] H:{b} 

F a v F b , C a v G b , H a v H b t ( F a v G a + H a ) & ( F b v G b + H b )  

xix U:{a,b} F:{a} 

-(Fa & Fb) t -Fa & -Fb 

xx Same model as i 

( F a + G a v G b ) v ( F b + G a v G b ) F F a v F b + G a v G b  

Exercise 4.3.1 

i U: {a,b} F: {(a,a)} 

Faa v Fbb t Faa & Fba & Fab & Fbb 

11 U: {a,b} F: {(a,b), (b,a)} 

(Faa v Fba) & (Fab v Fbb) t Faa v Fbb 

... 
111 Same model as ii 

(Faa v Fab) & (Fba v Fbb) t (Faa & Fab) v (Fba & Fbb) 

iv U:{a} F:{ } G:{(a,a)} 

-Fad, Gaa + -Fad t -Gaa 

v Same model as iv 

Fa + Gaa F Fa v -Gad 

vi U: {a,b} 

V: {(a,a,a), (b,b,b), (a,a,b), (b,b,a)l 
((Vaaa & Vaab) v (Vaba & Vabb)) & ((Vbaa & Vbab) v (Vbba & Vbbb)) 

t ((Vaaa & Vaab) & (Vbaa & Vbab)) v ((Vaba & Vabb) & (Vbba & Vbbb)) 
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vi i U :  {a,b} T :  {(a,b)} 

-(Tad & Tab) & -(Tba & Tbb) t -(Tad v Tab) & -(Tba v Tbb) 

viii U :  {a,b,c} F:  {(a,b), (b,c),(a,a),(c,a)l 

Exercise 4.4 

i U :  {m ,  n ]  a: m b: m c: n d :  n 

m=m. n=n t m=n 

v U :  {a ,  b, c }  F:  {a ,  b }  

[((Fa & Fa) & a#a) v ((Fa & Fb) & a f b )  v ((Fa & Fc) & a#c)] 

v [((Fb & Fa) & b f a )  v ((Fb & Fb) & b#b) v ((Fb & Fc) & b fc ) ]  

v [((Fc & Fa) & c f a )  v ((Fc & Fb) & c f b )  v ((Fc & Fc) & c f c ) ]  

ix U :  {a ,  b,c} F:  { (a ,  b), (a, 

((Fuu H a f u )  & (Fub e u f b )  & (Fuc e a f c ) )  

v ((Fba e b#a) & (Fbb e b f b )  (Fbc e b fc ) )  

v ((Feu H c f u )  & (Fch H c f b )  (Fcc H c fc) )  

t (Faa & Faa + a=a) & (Faa & Fab + a=b) & (Faa & Fac + a=c) 

& (Fab & Faa + h=a) & (Fah & Fuh + h=h) & (Fuh & Fuc + h=c) 

& (Fac & Faa + c=a) & (Fac & Fab + c=b) & (Fac & Fac + c=c) 

& (Fba & Fba + a=a) & (Fba & Fbb + a=b) & (Fba &Fbc + a=c) 

& (Fbb & Fba + b=a) & (Fbb & Fbb + b=b) & (Fbb & Fbc + b=c) 

& (Fbc & Fba + c=a) & (Fbc & Fbb + c=b) & (Fbc & Fbc + c=c) 

& (Feu & Fca + u=a) & (Feu & Fch + u=h) & (Feu &Fee + a=c) 

& (Fcb & Fca + b=a) & (Fcb & Fcb + b=b) & (Fbb & Fbc + b=c) 

& (FCC & Fca + c=a) & (FCC & Fcb + c=b) & (Fbc & Fbc + c=c) 
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Exercise 4.5.2 

i Vxyz(Fxy & Fyz + Fxz), Vx3yFxy F 3xFxx 
U: N. 
F: {(m,n) : m a }  

I st premise: T 
2nd premise: T 
Conclusion: F 

11 Vx3yVz(Fxy & (Fyz + Fxz)) F 3xFxx 
U: N. 
F: {(m,n) : m<n} 

Premise: T. 
('Every number is less than some other number, and if this other number is 
less than a third number then the first one is also less than the third one.') 
Conclusion: F. 
('Some number is less than itself.') 

. . . 
111 Vx3yFxy, Vxyz(Fxy & Fyz + Fxz), Vx-Fxx 

F Vxy(Gx & -Gy + Fxy v Fyx) 
U: N. 
F: {(m,n) : n is an even number greater than m ]  
G: {m : m is even} 

1st premise: T 
('For each number there is an even number that is greater.') 
2nd premise: T 
('If y is an even number greater than x, and z is an even number greater than 
y, then z is an even number greater than x.') 
3rd premise: T 
('No number is an even number greater than itself.') 
Conclusion: F. 
('If x is even and y is odd, then either x is an even number greater than y or y 
is an even number greater than x.') 
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iv Vx3yz(Fxy & Fzx), Vxyz(Fxy & Fyz + Fxz) t 3xy(Fxy & Fyx) 
U: N. 
F: {(m,n) : either m and n are even and m a ,  or 

m and n are odd and m>n, 
or m is odd and n is even.} 

v Vx-Fxx, Vx3yVz(Fxy & (Fyz + Fxz)) t Vxyz(Fxy & Fyz + Fxz) 
U: N 
F: {(m,n) : 3 k ( b 0  & (11=2~(m+l)-l or 11=2~(m+l)))} 

vi Vxyz(Gxy & Gyz + Gxz), Vxy(Gxy + -Gyx), 

Vx3yGyx, Vx(x+a + Gxa) t 3yVx(x+y + Gyx) 
U: N 
G: {(m,n) : m > n } 
a: zero 
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Annotation, 18-25, 33, 38, 80-86 
See also Line of proof 

Antecedent, 7-8, 12, 22-23, 29, 41, 51, 
94 

Argument, 1-3, 14 ,  17-18,26,28,39, 
50,53-54,69,99-100, 102, 
110-111 

Arrow, 4,70 
elimination, 19, 23 
introduction, 19, 22 

Associativity, 30, 95 
Assumption, 18, 82, 85 

vacuous discharge, xii 
Assumption set, xi, 18-25, 37, 80-86 

See also Line of proof 
Atomic sentence 

of predicate logic, 61 
of sentential logic, 6 

At least. 70-71 

Biconditional, 7-8, 11, 13, 25,40, 61 
ponens, 30 
tollens, 30 

Bitransposition, 30 
Bound variable. See Variable 

Commutativity, 30 
Conclusion, 1-3 , 17-18 , 26, 32, 35, 

37,39,44-47,50-51,53-54, 
85,99-101, 104-105, 111 

Conditional, 7, 11-12 , 22-23, 25, 
40-42,51,94, 109 

proof, 22 
Confinement, 89 
Conjunction, 6, 11, 13-14, 20, 40, 61, 

95, 109 

Connective, 3-4 , 7 ,  9-10, 3940 ,42 ,  
57, 61,69, 91,97 

binary, 6, 40 
truth-functional, 40 
unary, 6 

Consequent, 7, 12, 22-23 , 29, 40-41, 
5 1 

true, See True consequent 
Contingent, 47-48 
Counterexample, 53-54, 110 
Countermodel, 99-102, 104-105, 107, 

110-1 12 
with identity, 107-108 
infinite, 1 10-1 12 
numerical, 11 1-1 12 

de Morgan's laws, 30 
Denial, 7-8, 21,24 
Derived rules, 32-34, 36-37, 89 
Dilemma (all forms), 29-30 
Disjunction, 6, 11 , 13, 20-21, 40, 61 
Disjunctive syllogism, xiii, 21 
Distribution, 30 
Domain, See Universe 
Double-arrow, 4 

elimination, 19, 25 
introduction, 19, 25 

Double negation, 29, 36 

Entailment, 2, 18 
Exactly, 72 
Existentialization, xiv, 76-78, 82 
Existential, 60, 62, 64, 70-71, 89, 95, 

104 
elimination, xiii-xiv, 76, 83 
expansion, See Expansion 
generalization, 82 
instantiation, xiv 
introduction, 76, 82 
quantifier, 60 
wff, 62 



Expansion 
of existential, 96 
of universal, 95 

Expression 
of predicate logic, 60-61, 64, 65-66 
of sentential logic, 5-7 

Extensional context, 87 
Extensions, 93-94, 97 

of one-place predicates, 93 
of n-place predicates, 103 

False antecedent, 29 
Finite interpretation, See Interpretation 
Formula 

open, 65,76-78 
well-formed, 6-7, 60-62 

Hypothetical syllogism, 29 

Identity, xv, 57, 71, 85, 99, 102 
countermodels with, See Counter- 

models 
elimination, 76, 79, 86-87 
introduction, 76, 79, 85 
non-, 64 
symbol, 59,61 

Importationlexportation, 30 
Impossible antecedent, 29 
Inconsistent, 47-49 
Indirect proof, 24 
Indirect truth table, 49 
Infinite countermodel, See Counter- 

models 
Instance, 76, 78-79, 80, 83, 85 
Intensional context, 87 
Interpretation, 93-94 , 97, 99-101, 103 

-104, 107-108, 110 
finite, 103, 108 

Invalid, See Valid 
Invalidating assignment, 44, 49-5 1, 99 

Line number, 18-19,22,33 
Line of proof, 18 
Logical form, 11,53, 69 

Metalanguage, xv-xvi, 107, 109 
Metavariable, 5, 59, 67 
Model, 99. See also Countermodel; 

Interpretation 
Modus (ponendo) ponens, 23 
Modus tollendo ponens, 21 
Modus tollendo tollens, 29 

Name, xiv, 57, 59, 61-62, 65, 67, 
76-78,80-83,85-86,97 

extension, 107-109 
instantial, 78, 83, 85, 95-96 

Negated 
arrow, 29 
double-arrow, 30 

Negation, 6-7, 11-12,40, 61, 64 
Neither, 13 
Numerical countermodel, See Counter- 

models 

Ordered pair, 102 
Ordered n-tuple, 102-103 

Parentheses, 3, 5, 57 
Parenthesis-dropping conventions, 9, 

64 
Predicate letters (predicates), 57-61, 

67,99, 102-104, 108 
Premise, 1-2, 17-18, 26, 32-33, 35, 

37, 39,43-47,SO-51,53-54, 
99-101, 104, 11 1-112 

Prenex form, 9 1 
Proof, 17-18 

for a given argument, 18, 26 
line of, 18, 37 
primitive rules of, 19-26 



Quantifier, 57, 60, 64-66, 69-70, 78 
exchange, 89-91 
existential, 60, 71 
scope, See Scope 
universal, 60, 69 

Reductio ad absurdum, xii, 19, 24 
Reductio assumption, 24 
Rules of proof, 17-26, 29-34, 79-87, 89 

conditions on, 80-85 
derived, 29-30,32-34, 89 
primitive, 19, 79 
of sentential logic, 19-33 
of predicate logic, 79-86, 89 

Scope, 65-66,70,91,96, 104 
wide vs. narrow, 66,96 

Sentence, 1, 7, 17-18, 28, 35, 39, 41, 
47, 57, 78, 91, 93-94, 99, 
103-104, 107-108, 110 

atomic, 6, 61 
of English, 5, 10-11, 13-14,67-71 
letter, 3, 5, 6, 31-32, 42, 44-45, 57, 

59,61, 97 
variable, 3 

Sentential connective. See Connective 
Sequent, 17, 28, 31-35, 37, 43-47, 

50-51, 53-54, 89, 99-101, 
104 

Soundness, 2 
Stylistic variants, 11 
Subderivation, xi 
Substitution 

instance, 3 1-32 
pattern, 3 1-32 

Tautology, 47 
Theorem, 35-38,49,85,89 
Tilde, 4, 89 

Translation scheme 
for predicate Logic, 67-68 
for sentential Logic, 10-1 1 

Transposition, 30 
True consequent, 29 
Truth table, 39,41,43 

indirect, 44 
Truth value, 39-41, 93-94, 97, 103, 

108 
Truth-functional, 40 
Turnstile, 17, 35 

double, 28 

Universalization, 76-77, 80, 89 
Universal, 60, 69 

elimination, 76, 80 
expansion, See Expansion. 
introduction, 80 
quantifier, 60,64, 70 
wff, 61 

Universe, 93-96, 99, 103-104, 
107-108. 11 1-1 12 

Validity, 1-2, 14, 26,69, 99 
checking with truth tables, 43-45 

Variable, 57-60, 65,77-78 
bound, 66 
meta-, 5, 59 
sentence, 3 
unbound (free), 66, 78 

Vocabulary 
of predicate logic, 57, 60 
of sentential logic, 3 

Wedge, 4 
elimination, xiii, 19, 21 
introduction, 19, 20 

Wedge-arrow, 29 
Wff. See Formula, well-formed. 




