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 We suggest that an over-arching ‘fitness factor’ (an index of general genetic quality that predicts
survival and reproductive success) partially explains the observed associations between health
outcomes and intelligence. As a proof of concept, we tested this idea in a sample of 3654 US
Vietnam veterans aged 31–49 who completed five cognitive tests (fromwhich we extracted a g
factor), a detailed medical examination, and self-reports concerning lifestyle health risks (such
as smoking and drinking). As indices of physical health, we aggregated ‘abnormality counts’ of
physician-assessed neurological, morphological, and physiological abnormalities in eight
categories: cranial nerves, motor nerves, peripheral sensory nerves, reflexes, head, body, skin
condition, and urine tests. Since each abnormality was rare, the abnormality counts showed
highly skewed, Poisson-like distributions. The correlation matrix amongst these eight
abnormality counts formed only a weak positive manifold and thus yielded only a weak
common factor. However, Poisson regressions showed that intelligence was a significant
positive predictor of six of the eight abnormality counts, even controlling for diverse lifestyle
covariates (age, obesity, combat and toxin exposure owing to service in Vietnam, and use of
tobacco, alcohol, marijuana, and hard drugs). These results give preliminary support for the
notion of a superordinate fitness factor above intelligence and physical health, which could be
further investigated with direct genetic assessments of mutation load across individuals.
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1. Introduction

A formerly steady drip of individual reports has become a
regular flow of empirical studies showing positive correla-
tions between higher intelligence and better health outcomes
(Batty, Deary, & Gottfredson, 2007; Deary & Der, 2005;
Gottfredson & Deary, 2004; Hart et al., 2005; Kuh, Richards,
Hardy, Butterworth, & Wadsworth, 2004; Martin & Kub-
zansky, 2005; van Oort, van Lenthe, & Mackenbach, 2005).
When a relationship—such as that between intelligence and
health—becomes well substantiated, the correlation's exis-
tence often seems obvious (in retrospect), but the reasons for
ll rights reserved.
the correlation are often left unexamined. There are at least
four pathways that could contribute to the observed intelli-
gence–health correlations, but so far cognitive epidemiolo-
gists have only given serious attention to the fourth.

1. Intelligence and health could both be influenced by
common genetic factors.

2. Intelligence and health could both be influenced by
common environmental factors.

3. Health could influence intelligence.
4. Intelligence could influence health.

Let's consider each pathway through some specific
examples. 1) Common genetic factors could influence both
intelligence and health. These include genes ormutations that
affectmultiple traits.We focus on this possibility in this paper.
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Fig. 1. A model of the fitness factor: how it might influence both general
intelligence and health outcomes. Note that it may create positive
correlations between intelligence and good health through two pathways:
(1) intelligence influences lifestyle and health behaviors (exercise, diet,
smoking, drinking, drug use, hazard exposure), which influence health
outcomes; (2) intelligence and health outcomes are both positively and
directly loaded onto the fitness factor, which reflects underlying genetic
quality (low mutation load).
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2) Environmental factors could influence both intelligence
and health. These factors might include prenatal infection,
malnutrition, high pathogen load, environmental toxins, or
social stress (Fuhrer et al., 2002; Marmot, 2003; Singh-
Manoux, Ferrie, Lynch, & Marmot, 2005). 3) General good
health may boost or protect intelligence and, conversely,
specific illnesses (or their treatment side-effects) such as
influenza, diabetes or cancer may harm it. Illness, or
treatments, may affect intelligence by affecting glucose
availability, neurotransmitter balances, patterns of gene
expression in neural tissue, or other aspects of neurophysiol-
ogy. 4) Intelligence could influence health, especially through
choice of lifestyle (Batty et al., 2007; Gottfredson & Deary,
2004; Kumari, Seeman, & Marmot, 2004; Starr et al., 2004;
Whalley, Fox, Deary, & Starr, 2005). Higher-intelligence
people may learn earlier and faster about the health
implications of habits such as smoking, drinking, using
drugs, over-eating, and being sedentary (Gottfredson,
2006). Intelligence can also influence health indirectly
through improving education and career outcomes. Blue-
collar jobs may entail higher accident risks, more exposure to
toxins, pathogens, and mutagens, more stress, fewer holidays,
worse food, and worse health insurance, all of which can
undermine health.

These four pathways probably all contribute somewhat to
the positive correlations between intelligence and health, but
their relative importance remains unknown. Indeed, findings
that intelligence and health are correlated are often taken as
prima facie evidence for the second or fourth pathway. Our
concern here is not to argue that these two pathways are
unimportant, but that the first pathway (common genetic
factors) may warrant much closer attention.

We suggest that a latent genetic ‘fitness factor’ influences
diverse traits throughout the entire human organism includ-
ing, but not limited to, general health and general intelligence.
(By ‘fitness’ we mean a person's statistical propensity to
survive and reproduce successfully in ancestrally normal
environments). This hypothesized fitness factor (Houle,
2000; Miller, 2000; Prokosch, Yeo, & Miller, 2005) (see
Fig. 1 below), as manifest throughout the entire phenotype, is
broader in scope than physical health; it includes traits such
as mental health, sexual attractiveness, social status, parental
competence, and cognitive abilities. Indeed, the ‘fitness factor’
would be hierarchically dominant to g and, would partly
explain the existence, stability, heritability, and predictive
validity of g. We posit that this fitness factor reflects an
individual's general genetic quality (low mutation load, low
genetic inbreeding). (What evolutionary biologists call
‘phenotypic condition’ is affected by both genetic quality
and environmental variables. Here we focus theoretically on
genetic fitness but empirically on phenotypic condition.)

Fig. 1 illustrates our provisional model of how the fitness
factor might influence both intelligence and health. Positive
loadings from general intelligence and physical health on the
hypothesized fitness factor could explain a portion of the
positive correlations between intelligence and health
observed in cognitive epidemiology research, without
depending on pathways 2, 3, or 4.

It is well known, among readers of this journal, that any
cognitive ability correlates moderately with any other cogni-
tive ability. This tendency of abilities to go together gives rise
to Spearman's g, the formalized factor accounting for around
half the total variance in a diverse array of tests (Jensen,1998).
Is this striking matrix of positive correlations from which g
emerges unique, or is it part of a larger phenotype-wide
manifold? Evolutionary biology offers two good reasons to
expect a positive manifold throughout the phenotype that
can be represented by a general fitness factor. These rea-
sons concern the nature of mate choice, and the nature of
mutations.

First consider mate choice — the selective choice of sexual
partners found in most animal species. Finding and choosing
a mate choice has higher costs in time, energy, and risk than
mating randomly, so mate choice must offset these costs by
offering some compensating fitness benefits such as better
genes or resources for one's offspring. Consistent with
Darwin's sexual selection theory, decades of evidence
(Andersson & Simmons, 2006; Kokko, Jennions, & Brooks,
2006) suggest that mate choice can bring both genetic
benefits (such as fewer mutations that would reduce the
survival and reproductive prospects of one's offspring) and
resource benefits (such as better food, territory, or
protection).

In particular, mate choice for genetic benefits (‘good genes
mate choice’) makes more sense if there is some general
dimension of genetic quality similar to our hypothesized fitness
factor. Of course, for such ‘good genes sexual selection’ to work,
animals require no conscious understanding of why they
evolved mate preferences for certain traits correlated with
genetic quality. Also, the fact that many species show good
genes mate preferences for multiple traits suggests that no
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single trait has a very high correlation with overall genetic
quality.

The second reason to expect a general fitness factor
concerns the nature of mutations. As a species, we are
perpetually subject to the opposing forces of mutation and
selection. We all carry thousands of mutations but their
number and harmfulness vary among us (Crow, 2000; Houle
& Kondrashov, 2002; Lynch et al., 1999). If most of our genes
are at least mildly pleiotropic, then such mutations will
impair multiple traits to some degree. We propose that
individual-level variation in mutation load likely causes a
population-level, weakly visible, phenotype-wide correlation
matrix, which may be seen under high enough resolution
(small associations are only detectable through large sample
sizes). If there is such a matrix, then traits subject to natural
and sexual selection (fitness-related traits) should all be
positively correlated. Since g is likely to have a huge genetic
footprint (we know this empirically since no major studies
have found genes accounting for more than 1% of the variance
in g), our hypothesis suggests that g should correlate
negatively with most impairments across most other traits.

In this report we use physician-diagnosed medical
measures (scored dichotomously as normal or abnormal) of
diverse physical traits as one might use ‘items’ in an IQ-type
test. We formed ‘tests’ (or scales) of these abnormalities and
examinedwhether these scales correlated positively with one
another and negatively with g.

2. Methods

2.1. Participants

This study included all 3654 White non-Hispanic men
among the 4462 US Vietnam-era Army veterans who were
recruited, as part of the larger Vietnam Experience Study
(VES), to undergo a comprehensive four-day physical and
psychological examination. The men had served in Vietnam,
South Korea, Germany, or the USA. The menwere aged 31–49
(mean 38) at the time of these examinations in 1985–6. Their
average age of induction into the army was 20 (range 16–33).
We included only men whose self-reported ethnicity was
White and non-Hispanic because of our evolutionary hypoth-
esis. Selection on traits varies between populations with
different geographic ancestry (think of the selection on
melanin in equatorial regions, or the selection on shorter
stature in Polar regions).

Careful sampling design ensured that men in this study
were highly representative of the US Army at the time of their
military service, 1965–1971. Army recruits during that period
were probably more representative of the general population
of youngmen than is typical of later military samples, because
there was compulsory military service. Except for test-
norming samples, military samples are generally the most
representative samples available, and they are widely used in
cognitive epidemiology. Yet, it should be noted that even the
big military samples are always somewhat restricted in range.
All Army recruitsmust pass a physical examination, so none of
the VES participants had serious physical disabilities or
illnesses when they were inducted. Federal law also bars
the US military from enlisting individuals below the 10th
percentile in cognitive ability, which means that men from
the lower (left) tail of the cognitive ability distribution are
under-sampled. Normally, the military services induct no one
below the 16th percentile of mental ability, but Secretary of
Defense Robert McNamara initiated Project 100,000 in 1966,
which required all branches of the military to induct men
from the 10th–15th percentiles. They were also required to
meet larger quotas for men of substantially below-average
intelligence; during 1967–1971, 25% of Army accessions were
to come from the 10th to 30th percentiles of ability (Laurence
& Ramsberger, 1991, p. 29). After induction into the Army,
lower-intelligence men may have been more likely to die in
combat, or, after military service, to end up in prison, hospital,
or otherwise unable to participate in the VES study. None-
theless, the sample is more representative at the low extreme
than is often the case in intelligence research. At the other
extreme, higher-intelligence men were reasonably well
represented, and atypically so, because there was mandatory
conscription during these years. Thus, despite some restric-
tion at the low end, our sample captures a broad range of
intelligence. Comprehensive details of the VES sampling
design are given on the Centers for Disease Control website
(also in Centers for Disease Control, 1989 p. 43).

2.2. Cognitive ability measures

The 4462 veterans took a large battery of neuropsycholo-
gical tests when they were examined in 1985–6. Of these, we
chose 5 cognitive ability tests for their sound psychometric
properties as well as their suitability for a g factor. We settled
on the Verbal and Arithmetic tests of the Army Classification
Battery (ACB) (Montague,Williams, Gieseking, & Lubin,1957),
the Information and Block Design subtests of the Wechsler
Adult Intelligence Scale-Revised (WAIS-R) (Wechsler, 1981),
and the Reading subtest of the Wide Range Achievement Test
(WRAT-R) (Jastak& Jastak,1965). Both theACB andWAIS pairs
of tests, one test in each being verbal and the other nonverbal,
are sometimes used to measure overall intelligence. We
included a second verbal test, the WRAT-R, to compensate
for the low ceiling on the ACB Verbal test. The g factor
explained N58% of the total variance among the 5 test scores.

We also extracted two additional g scores to replicate key
analyses: an alternative g from tests taken at time of physical
examination (N=3627), and an induction-age g (N=3572).
The second ‘middle-age g’was derived from ten tests, the five
tests in our 5-test g plus five other, more neurodiagnostically-
oriented tests. The 5- and 10-test gs correlated r=.97. Lastly,
we extracted an earlier-life g factor from four mental tests
that had been administered when all 18,313 veterans in the
larger VES study had first been inducted into the US army.
These were the verbal comprehension test (VE) and arith-
metic reasoning (AR) tests from the general technical (GT)
examination (which is often used by cognitive epidemiolo-
gists alone as an index of general intelligence), plus a Pattern
Analysis (PA) test and General Information Test (GIT). This
‘induction-age g’ correlated r=.87 with both of the ‘middle-
age’ general factor scores.

2.3. Medical abnormality counts

As well as neuropsychological test scores, the VES
researchers collected other health information including



Table 1
Descriptive statistics for g factor, eight abnormality counts, and six covariates.

Mean SD Range Skewness Kurtosis (N)

g factor .16 .88 −2.76−1.78 − .73 .02 (3653)
Abnormality-count scales (# items)
Cranial (31) .42 .86 0–13 3.22 21.55 (3654)
Motor (44) .32 1.43 0–29 10.65 157.88 (3654)
Reflexes (11) 2.40 3.03 0–11 1.08 − .14 (3654)
Peripheral sensory
(24)

.29 .96 0–19 7.12 91.68 (3654)

Head (29) .86 1.16 0–8 1.50 2.61 (3654)
Urine tests
(12)

.29 .66 0–7 3.09 13.00 (3654)

General physical (22) .42 .70 0–5 1.92 4.47 (3654)
Skin (62) 4.06 2.44 0–14 .56 .03 (3654)

Smoking
(current cig/day)

19.85 16.31 0–80 .50 − .17 (3652)

Alcohol
(current drinks/mo)

33.98 55.17 0–720 3.97 26.59 (3637)

Drug use, past
or present (no/yes)

.27 .45 0–1 1.01 − .98 (3654)

Body mass index (BMI) 26.80 4.41 16–67 1.58 7.16 (3653)
Age at exam 38.35 2.50 31–49 .13 .06 (3654)
Vietnam service (no/yes) .56 .50 0–1 − .25 −1.94 (3654)
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self-reported, physician-assessed, and laboratory-test data.
We used count data to construct abnormality ‘test’ scores that
would sample different aspects of health so that we could
examine how they related to each other and to g. We selected
‘items’ that were either physician-assessed or laboratory data
(rather than self-reported items — with the exception of
covariates discussed below). We used mostly dichotomous
items where the physician response was unambiguous
(‘normal’ versus ‘abnormal’). For the few items that used
continuous measures (such as the urinalysis results), we
followed the reference values used in the analyst's codebook,
provided by the Centers for Disease Control, to code ‘normal’
versus ‘abnormal’. The health examinations followed a
protocol where, in the case of ocular health, for example, a
series of observations were made about disorders such as
‘Retinal abnormality: arterio-venous nicking, arteriolar
spasm, exudates’ (and so on). Each ‘item’ was rated ‘normal’
or ‘abnormal’ by the physician. We scored each ‘normal’ as
zero and each ‘abnormal’ as one. In the case of bilateral
abnormalities, we scored a double impairment as two.
Continuing the ocular example, a man with no impairments
would score zero and a manwho had arteriolar spasm in both
eyes and exudates in one eye would score three.

These items were aggregated into eight abnormality
counts corresponding to different categories of health
indicators in the VES, without any weighting of constituent
items. The first four abnormality counts included physician-
diagnosed signs of neurological abnormalities: Cranial nerves,
Motor nerves, Reflexes, and Peripheral Sensory nerves. The
other four abnormality counts concerned Head, Urinalysis,
General Physical, and Skin items. Abnormalities of the eyes,
ears, nose, throat, sinus and salivary glands were summed to
make the ‘Head scale’; abnormalities from urinalysis labora-
tory data (given the VES reference norms) were summed to
make a ‘Urinalysis scale’; dermatology items were summed to
make a ‘Skin scale’ and, a heterogeneous set of conditions
(such as club toes, joint swelling, or hernia) were summed to
create a ‘General Physical Abnormalities scale’. Bearing in
mind our ‘fitness factor hypothesis’, we excluded measures
where the relationship to genetic fitness seemed especially
vexed. For example, a ‘missing limb’ in this sample is likely to
reflect a combat injury in Vietnam rather than a congenital
abnormality arising from geneticmutations. Appendix A gives
the list of the variables used to create each scale.

2.4. Covariates

The covariates included age (at time of physical examina-
tion in 1985–6), body mass index (BMI at time of examina-
tion), alcohol (self-reported alcoholic drinks per month in
1985), and smoking (self-reported cigarettes smoked per day
in 1985). We did not expect to seemuch of an age effect in our
age-restricted sample, but since age affects both health and
intelligence, we included it as a covariate. Although uncon-
nected with our central hypothesis, we also examined service
in Vietnam (because of possible exposure to toxins that might
harm both intelligence and health) compared with service
elsewhere, and self-reported use of marijuana or hard drugs.

We focused on covariates that might influence health,
rather than covariates that might influence intelligence. By
age 38 (our sample average), the heritability of intelligence is
both high and stable. Twin and adoption studies show that
shared family environment has zero effect on intelligence in
adulthood (see for review Plomin & Petrill, 1997). We did not
include socio-economic status as a covariate because beha-
vioural genetic studies suggest that socio-economic status in
mobile societies is mostly a consequence, rather than a cause,
of intelligence differences (Scarr &Weinberg,1978). (This fact
also reduces the plausibility of the cognitive epidemiology
model inwhich intelligence and health are both influenced by
common environmental factors.) Socio-economic differences
certainly influencewhat people know (a bright person from a
blue collar environment may not recognize an escutcheon,
whereas a dull member of the British aristocracy will readily
identify a bend sinister), but the evidence is compelling that
such socio-economic differences do not contribute to the
latent intelligence factor under analysis here.

3. Analyses and results

3.1. Descriptives

Table 1 shows the basic descriptive statistics for the key
measures. The g factor is distributed fairly normally. Compared
to the full sample of 4,462, our subsample of non-Hispanic
White veterans showed a slightly higher mean (.16 versus 0.0)
and a slightly lower SD (.88 versus 1.0).Most of the abnormality
counts are, as expected, not normally distributed and form
Poisson-like distributions— because that is the nature of count
data. For any given item (such as ‘eye exudates’) most people
score normal (0), and only a small percentage score abnormal
(1 or perhaps 2 for bilateral items). The number of items that
constitute each scale varies, but no man scored the maximum
possible on any scale.

3.2. Pearson correlations

If the g factor reflects the general efficiency of neuropsy-
chological functioning, then reverse-coded g should reflect



Table 2
Correlations among g factor (reverse-scored), eight abnormality-count scales, and four covariates (N=3633 White Army veterans).

Abnormality counts (log10 transformed) Covariates

g (rev) Cranial Motor Reflex Periph Head Urine Gen
phys

Skin Smok Alcoh
(log10)

BMI
age (log10)

Cranial .038⁎
Motor .108⁎⁎ .143⁎⁎
Reflexes .053⁎⁎ .081⁎⁎ .087⁎⁎
Peripheral sen .071⁎⁎ .141⁎⁎ .167⁎⁎ .079⁎⁎
Head .189⁎⁎ .054⁎ 049⁎⁎ .036⁎ .039⁎
Urine tests .006 − .005 .053⁎⁎ − .006 .014 052⁎⁎
General phys .068⁎⁎ .027 .079⁎⁎ .015 .020 .089⁎⁎ .026
Skin − .014 − .020 − .019 .032 .061⁎⁎ .005 .000 .005
Smoking .042⁎ .006 .041⁎ .045⁎⁎ .012 .099⁎⁎ .072⁎⁎ .038⁎ .026
Alcohol (log) − .037⁎ − .048⁎⁎ .001 .012 − .020 .045⁎⁎ .049⁎⁎ .000 − .058⁎⁎ .142⁎⁎
BMI (log) .032 .003 − .032 .059⁎⁎ − .010 − .008 − .096⁎⁎ .016 .164⁎⁎ − .020 − .062⁎⁎
Age − .071⁎⁎ .004 − .003 .022 .054⁎⁎ − .011 − .016 − .012 .105⁎⁎ − .055⁎⁎ − .073⁎⁎ .065⁎⁎

⁎Indicates pb .05 (two-tailed); ⁎⁎indicates pb .001 (two-tailed).

585R. Arden et al. / Intelligence 37 (2009) 581–591
general neuropsychological impairment, and should be
positively correlated with physical impairments as indexed
by our abnormality counts. However, the abnormality counts
are not normally distributed, so we log-normalized them
before correlational analysis. Table 2 shows the simple
bivariate Pearson correlations among reverse-scored g, the
logged abnormality counts, and the four continuous covari-
ates, two of which (alcohol use and BMI) were also logged
owing to non-normality. Five abnormality-count scales
(the four neurological scales plus the Head scale) correlate
with each other (rs=.036–.167) as well as with lower g
(rs=.038–.189). Correlations among the three other abnorm-
ality counts are fewer and smaller, and only one (General
Physical) correlates significantly with lower g. Higher g men
in this sample tended to be slightly older and drink more, but
smoke less. Men who smoked more had higher abnormality
counts on five of the eight scales. There was no pattern,
however, to the correlations for alcohol consumption and
BMI; they each correlated with 3–4 of the 8 abnormality
counts, half the time negatively and half positively, but never
both in the same direction.

We re-ran the correlations using the two alternative gs,
the alternative 10-test ‘middle-age g’ and the 4-test ‘induction
g’. Both yielded the same pattern of significant correlations as
seen in Table 2, the only difference being that the former were
sometimes a bit higher and the latter sometimes a bit lower.

3.3. Effects of prevalence of abnormalities on their correlations
with intelligence

This variability in correlations among the abnormality
scales may be influenced somewhat by statistical artifacts,
such as differences in the reliability of physician ratings across
abnormalities, or in prevalences of those abnormalities. There
are only spotty data on reliability, but we could examine the
effect of prevalence. The issue is this. Almost all of the
individual abnormalities were very rare (low prevalence),
typically just a few percent in the sample. Not only are lower-
prevalence items subject tomore sampling error, but the rarer
they are, the smaller their variance, and hence the lower their
correlations are constrained to be for statistical (not sub-
stantive) reasons. Thus, we expected that lower-prevalence
items might show weaker correlations with general intelli-
gence. This was indeed the case: across all of the individual
abnormality items (see Appendix A), there was a correlation
of r=.30 (pb .000) between an abnormality's prevalence and
its correlation with g. This suggests that there would be a
stronger positive manifold among items and scales if the
medical abnormalities were more common, or measured
more precisely as continua rather than normal/abnormal
dichotomies.

3.4. Poisson regressions

We examined the relations between the abnormality
counts and g in a second way. Instead of log transforming
the abnormality counts, as in the correlational analyses, we
regressed each on g and the covariates using Poisson
regression. Although the method does not allow us to analyze
all the counts simultaneously, it is more statistically suited to
individual count variables such as ours. Each abnormality
count (Cranial, Motor, Reflexes, Peripheral Sensory, Head,
Urinalysis, General Physical, and Skin anomalies) was
regressed on g and the six covariates, to identify any
significant predictors.

These analyses, shown in Table 3, tell basically the same
story as the correlations in Table 2. The regression coefficients
for g are significant for the same six of eight abnormality
counts: Cranial, Motor, Reflexes, Peripheral Sensory, Head,
and General Physical. None of the six covariates had such
consistent influence. Only for Skin abnormalities did more
than two of them have significant coefficients. The g factor
appears to be the only consistent predictor of abnormality
counts.

Once again, we replicated the analyses using the alter-
native, 10-test g at middle-age and then the ‘induction g’. Both
sets of regressions yielded the same pattern of results as
shown in Table 3, with one exception. The coefficients for
‘induction g’ were no longer significant for cranial nerve and
reflex abnormality counts, but four others remained
significant.

Taken together these results show that the relationship
between the abnormality count scales and various measures
of intelligence do not vary much even when the measure of g
changes and when influences from the environment sus-
tained over two decades of life, including army service, are



Table 3
Poisson regressions of eight physiological abnormality counts on the g factor and six covariates (3633 White Army veterans).

Neurological counts Other counts

Cranial
(31 items)

Motor (44) Reflexes (11) Peripheral
sensory (24)

Head (29) Urine tests
(12)

General
physical (22)

Skin (62)

B p B p B p B p B p B p B p B p

Intercept − .72 .452 1.09 .588 −1.29 .470 −3.99 .005 − .46 .432 3.07 .003 −1.63 .032 −1.73 .000
g factor − .09 .037 − .35 .000 − .06 .014 − .26 .000 − .27 .000 − .02 .701 − .13 .000 .01 .477
Smoking .00 .408 .01 .072 .00 .132 .00 .682 .01 .000 .01 .000 .00 .075 .00 .002
Alcohol − .13 .004 − .07 .504 .02 .185 − .07 .372 .07 .027 − .12 .023 − .00 .941 − .03 .014
Drugs ever − .01 .892 .00 .908 − .01 .312 .20 .155 .04 .506 .08 .407 .11 .085 .00 .882
BMI − .01 .983 −1.46 .231 1.10 .011 − .09 .926 − .09 .802 −3.25 .000 − .45 .315 1.55 .000
Age .00 .962 − .00 .910 .01 .074 .07 .001 .01 .486 − .00 .843 .00 .867 .02 .000
Vietnam .02 .785 − .16 .271 .05 .524 .03 .760 − .02 .687 .20 .121 − .02 .728 − .02 .310

Notes: statistically significant results are in boldface type. All abnormality counts, alcohol (current drinks per month) and BMI were log10 transformed.
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interposed between the first and second time of measuring
intelligence. This supports our suggestion that the relation-
ships among the abnormality counts and g are mediated by
more than lifestyle factors.

3.5. Factor analysis of abnormality count scales

We also ran some exploratory factor analyses to test the
notion of a fitness factor influencing phenotype-wide traits. It
is important to bear in mind that the Poisson-distributed
medical sign scales have much weaker measurement proper-
ties for this purpose than do well-designed IQ-type items and
tests, so would be expected to underestimate a general factor,
whatever its true magnitude.

We examined an unrotated principal axis factor that
included the eight logged abnormality counts. The first factor,
fairly normally distributed, explains around 7% of the variance
among these eight measures. This general abnormalities
factor correlates .16 with reverse-scored g (pb .001), and the
abnormality scales loading most heavily on it are the same as
those with significant g-correlations in Table 2. The Kaiser–
Meyer–Olkin measure of sampling adequacy is .588. Bartlett's
test of sphericity indicates that the correlation matrix is not
an identity matrix, but has sufficient non-random structure to
allow factor analysis (Chi-squared=399.17, df 28, pb .000).

3.6. Factor analysis of (dichotomous) abnormality items

We further investigated the factor structure of medical
abnormalities with an item-level analysis, by factor-analyzing
a subset of the individual abnormality items (as opposed to
aggregate abnormality counts) — specifically, those 24 items
that had the desirable measurement properties of being
unambiguous with regard to their good/bad status, and of
showing decent prevalence (at least 40 out of 3654, or about
1%). From these 24 items, we performed factor analyses using
Promax rotation (because the fitness factor hypothesis
suggests that the factors should correlate), using weighted
least-squares extraction with mean and variance adjustment.
We found that a four-factor solution fit the data reasonably
well (Chi-squared=100.53, df 85, p=.12). The root mean
square error of approximation (RMSEA) was estimated at .01;
the root mean square residual (RMSR) was estimated at .09.
This is above the RMSR cut-off of .07 suggested by experts (Hu
& Bentler, 1999), but given other fit indices and our low-
frequency count items we think the solutionworth reporting.
These four correlated factors suggest that the data are
somewhat structured although we do not draw strong con-
clusions about the meanings of the factors.

4. Discussion

Among these 3654 Vietnam-era veterans (mean age 38),
the bivariate correlations were positive, although small,
amongst general intelligence (g) and 6 of the 8 medically-
assessed abnormality counts (Cranial nerves, Motor nerves,
Reflexes, Peripheral Sensory nerves, Head, General Physical).
The Poisson regressions also showed that intelligence
significantly predicts 6 out of the 8 medical abnormality
counts, even after controlling for 6 key lifestyle covariates and
risk factors (age, smoking, drinking, drug use, BMI, age, place
of military service). The factor analysis of individual abnorm-
ality count scales revealed a weak general abnormalities
factor that also correlated with intelligence. Further, the
abnormality-item prevalences correlated moderately with
their g-correlations. The exploratory factor analysis of 24
individual abnormality items revealed some correlated
factors as well. Finally, all of these results were highly similar
whether analysis used the five-test g factor, the ten-test g
factor or the induction-age g factor assessed two decades
earlier.

Together, these results give some preliminary support for
the hypothesis that a general genetic fitness factor may partly
explain the many correlations between intelligence and
health that have been observed in cognitive epidemiology.
Other recent findings provide convergent support (Miller &
Penke, 2007; Posthuma et al., 2003; Prokosch et al., 2005;
Silventoinen, Posthuma, van Beijsterveldt, Bartels, &
Boomsma, 2006; Sundet, Tambs, Harris, Magnus, & Torjussen,
2005). For example, in a previous analysis of VES data, we
reported positive correlations (.14–.19) between intelligence
and three measures of semen quality—sperm count, sperm
concentration, and sperm motility—which is likely to be a
highly fitness-related trait in males (Arden, Gottfredson,
Miller, & Pierce, 2009).

The lifestyle covariates also predicted abnormality counts
to some degree. Smoking tobacco predicted higher counts in
five out of the eight scales, and alcohol use predicted in four—
half positively and half negatively. However, intelligence
predicted abnormality counts more consistently than any of
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these lifestyle factors did, and the number of significant
relations between lifestyle and abnormalities was halved
when including g in the Poisson regressions. These results
suggest that intelligence's correlations with health are not
just due to lifestyle.

4.1. How the findings relate to the fitness factor hypothesis

Since most genes influence several traits in parallel, many
harmful mutations are likely to disrupt several traits in
parallel. These correlated disruptions should give rise to
positive (but small) genetic correlations across traits in their
adaptive efficiency (Houle, 2000; Miller, 2000). Moreover,
there are likely to be substantial differences across individuals
in their overall ‘mutation load’ — the number and severity of
harmful mutations (Crow, 2000). In a species such as ours,
mutual mate choice amplifies variation in mutation load
through assortative mating for genetic quality (Hooper &
Miller, 2008). Together, these three effects–pleiotropic muta-
tions, variation in mutation load, and assortative mating for
genetic quality–are likely to create generally modest positive
correlations across almost all phenotypic traits.

4.2. Limitations of the study

Our data have some serious limitations for purposes of
testing the fitness factor hypothesis. These limitations could be
overcome by further research with other datasets and health
measures. In particular, while count data are commonly used in
medical research, they are statistically problematic.

First, although many statistical procedures are available
for analyzing normally distributed data, there are few
techniques for analyzing count data, where most individuals
score at the minimum (here, 0) and the number of people
scoring at successively higher levels drops dramatically. Thus,
while we could use Poisson regression to analyze one
abnormality count at a time, there is no appropriate factor
analytic procedure, to our knowledge, for extracting a general
factor from a matrix of such scales. This is why we tried to
analyze the data in several different ways.

Second, abnormality counts depend on aggregating some-
what arbitrary medical judgments about where to draw the
line between what is normal versus abnormal, which lowers
the psychometric reliability of such measures. For many
medical signs, there are few objective bases for scoring a trait
as statistically ‘abnormal’, much less as evolutionarily
‘maladaptive’. For example, a cholesterol value that is lower
than the reference norms for Westernized populations might
be adaptively normal among hunter–gatherer societies with
lower-fat diets. We have tried to avoid these ambiguities by
focusing on items that seem likely to impair normal
functioning in any population. Physicians must also rely on
fallible personal judgment when assessing most abnormal-
ities. This may partly account for the notorious unreliability of
clinical judgments. Not surprisingly, the levels of inter-rater
agreement reported for a subset of our dichotomous
measures ranged widely but tended to be low overall, despite
careful training of physician raters. Example kappa values are
illustrative: varicocele, .28; acne (grade 1), .24; mouth dental
status, .14 (Centers for Disease Control, 2007) (Medical and
Psychological Data Quality Supplement B page 9). Low kappas
work against our finding a fitness factor because measure-
ment unreliability reduces observed correlations.

Third, by definition, abnormality counts aggregate scores on
a series of dichotomous variables. A dichotomous variable
differs from a continuous one in that its mean (proportion
affected, p) strongly influences its variance (p(1−p)). The
closer p is to .5, the greater themeasure's variance and, in turn,
its capacity to correlate with other variables. This fact creates
statistical artifacts that, unless appreciated, can mislead when
interpreting results. For example, the .3 correlation we found
between each individual abnormality's prevalence and its
correlation with g (Section 3.3) suggests that the underlying
relationships between physical health and intelligence are
being obscured by differential prevalence across abnormality
items. Such artifacts would be greatest when individual
abnormalities (‘items’) rather than counts of them (‘scales’)
are being analyzed. Hence our reluctance to placemuchweight
on our factor analysis of 24 specific abnormalities even though
atfirst glance itmight seem themost conceptually directway of
testing the fitness factor hypothesis.

Fourth, while the sample size and comprehensiveness of
the medical examinations are impressive, we theorize that
any particular medical abnormality is, at best, a very weak
indicator of the proposed fitness factor. Just as individual IQ
test items have relatively low g loadings, specific medical
abnormalities will have very low ‘fitness loadings’. Our hope
was that by aggregating a number of abnormalities, the tiny
valid variance in each itemwould accumulate, much as it does
across items in a lengthy IQ test. The challenge for testing the
fitness hypothesis is that particular medical abnormalities
may be far weaker markers of general fitness than rigorously
designed intelligence test items are of g.

Fifth, our abnormality scales treat all rated abnormalities as
equally important, but we expect that they actually vary
substantially in their medical severity, stability over time,
implications for survival and reproduction, fitness loadings,
mutational target size, and the number and diversity of
constituent biological processes that they reflect. For example,
the g factor is likely to summarize the efficiencies of thousands
of constituent neurophysiological processes and the number
and severity of mutations across thousands of genes, so could
easily show correlations with other higher-order summary
characteristics such as longevity, social success, and sexual
attractiveness. By contrast, urine analysis abnormalities may
reflect more localized problems in liver, kidney, or metabolic
function, which could reflect fewer or very rare single-gene
polymorphisms. To take another example, the General Physical
abnormality scale includes some items that seem manifestly
more important to reproductive success and more fitness-
loaded (such as whether retinas are normal) than others
(whether pubic hair pattern is normal). While it is not ideal to
treat all abnormalities as equivalent, it is biologically parsimo-
nious given our limited understanding of how medical
disorders relate to biological fitness. It is also statistically
parsimonious, given that unit-weighted composite variables
usually perform about aswell statistically as domore diversely-
weighted composites (Bobko, Roth, & Buster, 2007; Dawes,
1979; Raju, Bilgic, Edwards, & Fleer, 1997).

Given these limitations, the surprise is not that the
correlations we observed were small, but that they kept
appearing. Although larger effect sizes (following Cohen's
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suggestion of how to characterize sizes (Cohen, 1988) are the
bread and butter of social scientists, miniscule correlations
are the bread and butter of evolution. For evolution, what
matters is robustness over time (which we cannot test, here),
not size of effect at any one time. The critical question is ‘are
the effects we saw tiny but robust or, tiny and fugitive?’ Only
further research can answer this question, but the pervasive-
ness of small correlations with g across various organ systems
and types of analysis suggests that it is worth pursuing.

4.3. Genetic tests of the fitness factor idea

The fitness factor hypothesis is amenable to more direct
empirical tests based on new genetic data. We would predict
that a range of phenotypes, including general intelligence, will
covary with a reasonable index of mutation load (see for
example (Boyko et al., 2008; Gorlov, Gorlova, Sunyaev, Spitz, &
Amos, 2008; Mitchell-Olds, Willis, & Goldstein, 2007). These
mutation load scoreswould include summing the total number
of very low-frequency SNPs and copy-number variants across
an individual's genome. If reliable indices of mutation load do
not correlate with a wide range of important phenotypes, then
the fitness factor idea may be safely discarded.

5. Conclusion

The field of cognitive epidemiology should be concerned
with all of the possible causal relationships between
intelligence on health, not just the relations among pheno-
typic intelligence, lifestyle, social environments, and health.
The elimination of health inequalities is a frequently stated
goal of cognitive epidemiology. If our fitness factor hypothesis
is correct, we might view health inequalities in a somewhat
different light. Some health disparities across socio-economic
groups may not be prima facie evidence of a dysfunctional
society, but may reflect genetic variance in mutation load that
affects both physical health and general intelligence (which,
in turn, influences socio-economic success). Evolution itself,
through pleiotropic mutations and assortative mating, may
maximize the range of genetic quality across individuals and
the strength of genetic correlations across traits, with the
side-effect that it maximizes the apparent unfairness of
medical, educational, and socio-economic outcomes. This is
not a cause for gloom, however. Evolution has also supplied us
with insight, empathy and a sense of fairness. Equippedwith a
clear understanding of the world as it exists, good men and
women have always found opportunities to reduce avoidable
suffering by exercising these gifts.

Appendix A. List of variables constituting each of the eight
abnormality-count scales

Cranial scale (neurology) variables, 31 (as ordered in Centers
for Disease Control, Table G.1, Vol. III)

Smell-rt
Smell-lt
Visual field-rt
Visual field-lt
Optic disc-rt
Optic disc-lt
Pupil size-rt-(mm)
Pupil size-lt-(mm)
Light react-rt
Light react-lt
Ptosis-rt
Ptosis-lt
Occular mobil-rt
Occular mobil-lt
Nystagmus-rt
Nystagmus-lt
Jaw strength
Jaw jerk
Facial pain
Corneal reflex-rt
Corneal reflex-lt
Facial muscles-rt
Facial muscles-lt
Palate motion-rt
Palate motion-lt
Gag reflex
Acc nerves-rt
Acc nerves-lt
Tongue motion-rt
Tongue motion-lt
Other cranial cond

Motor scale (neurology) variables, 44 (Centers for Disease
Control Table G.1 in Vol. III)

Amput loss
Gait
Arm swing-rt
Arm swing-lt
Tandem gait
Eyes open
Eyes closed
Abnorm muscle
Muscle “tone”
Atrophy
Strength-rt deltoids
Strength-lt deltoids
Strength-rt biceps
Strength-lt biceps
Strength-rt-triceps
Strength-lt triceps
Strength-rt wrist ext
Strength-lt wrist ext
Strength-rt grip
Strength-lt grip
Strength-rt fing abdu
Strength-lt fing abdu
Strength-rt hip flex
Strength-lt hip flex
Strength-rt knee ext
Strength-lt knee ext
Strength-rt knee flex
Strength-lt knee flex
Strength-rt dorsiflex
Strength-lt dorsiflex
Strength-rt plan flex
Strength-lt plan flex
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Strength-rt toe ext
Strength-lt toe ext
Tremors-rt arm
Tremors-lt arm
Finger-nose ataxia
Hand pronation
Heel-shin ataxia
Finger tapping
Arm drift
Excess rebound
Speech
Other motor cond

Reflexes scale (neurology) variables, 11 (Centers for Disease
Control, Table G.1 in Vol. III)

Reflex-rt biceps
Reflex-lt biceps
Reflex-rt triceps
Reflex-lt triceps
Reflex-rt knee
Reflex-lt knee
Reflex-rt ankle
Reflex-lt ankle
Reflex-rt plantar
Reflex-lt plantar
Other reflex cond

Peripheral sensory scale (neurology) variables, 24 (Centers for
Disease Control Table G.1 in Vol. III)

Pinprick-rt arm-pd (proximal dorsal)
Pinprick-lt arm-pd
Pinprick-rt-arm-pv (proximal ventral)
Pinprick-lt-arm-pv
Pinprick-rt arm-dd (distal dorsal)
Pinprick-lt arm-dd
Pinprick-rt arm-dv (distal ventral)
Pinprick-lt arm-dv
Pinprick-rt leg-pd
Pinprick-lt leg-pd
Pinprick-rt leg-pv
Pinprick-lt leg-pv
Pinprick-rt leg-dd
Pinprick-lt leg-dd
Pinprick-rt leg-dv
Pinprick-lt leg-dv
Vib-rt-lat mall
Vib-lt-lat mall
Vib-rt-patella
Vib-lt patella
Sens ext-face
Sens ext-arms
Sens ext-legs
Sens ext-visual

Head scale variables, 29 (Centers for Disease Control, Table C.1,
Vol. III)

Eye-scarring
Eye-cataract
Eye-scleral icterus
Eye-arterio-venous nicking
Eye-arteriolar spasm
Eye-exudates
Eye-papilledema
Eye-cupping
Eye-disc pallor
Eye-hemorrhages
Ear-cerumen impact
Ear-inflammation
Ear-drum perforated
Ear-drum retracted
Ear-drum scarred
Ear-drum bulging
Ear-drum inflamed
Nose-abnormality (inc. septum, polyps, ulceration, bleeding)
Throat-pharyngitis
Throat-tonsils
Mouth-dental status
Mouth-ulcers
Mouth-plaques
Mouth-mass
Mouth-glossitis
Mouth-gums
Sinuses-frontal
Sinuses-maxillary
Salivary glands

Urinalysis scale variables, 12 (Centers for Disease Control, Table
12.7, Vol. III)

Glucose
Ketones
Protein
Bilirubin
Urobilinogen
Haemoglobin
Red blood cells
White blood cells
Hyaline casts
Granular casts
Red cell casts
White cell casts

General physical scale variables, 22 (Centers for Disease Control,
Table C.1, Vol. III)

Breast-gynecomastia
Abdominal -visible abnorm
Abdominal-palpable mass
Abdominal -tenderness
Abdominal -palpable liver
Spleen palpable
Costovertebral angle -tender
Hernia
Pubic hair abnormal male pattern
Penis abnormal
Epididymis
Varicocele
Scrotal mass
Prostate
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Ext-club fingers
Ext-club toes
Oedema
Ext-acrocyanosis
Ext-soft tissue mass
Ext-joint swell
Scoliosis-spine
ln-lymph nodes

Skin scale variables, 62 (Centers for Disease Control, Table B.1,
Vol. III)

Hyperpigmentation
Hypopigmentation
Birthmarks
Other condition
Alopecia
Alopecia, scarring
Alopecia, nonscarring
Hirsuitism
Other hair condition
Acne, grade i
Acne, grade ii
Acne, grade iii
Acne, grade iv
Acne, atypical
Comedones only
Folliculitis
Hidraden suppur
Tinea of nails
Candida
Tinea versicolor
Tinea other
Infect cond other
Neoplastic
Cancer of skin
Dermato-fibromas
Epidermal cysts
Kera actinic
Kera seborrheic
Lipomas
Milia
Nevi atypical
Sebaceous hyperplasia
Warts, nongenital
Neoplastic cond other
Capillarities
Hemangioma
Palmar erythema
Poikiloderma civatte
Spider angiomas
Telangiectasias
Vasculitis
Varicosities
Vascular cond other
Aphthosis
Bullae
Vesicles
Eczematous derm
Dyshidrosis
Lichen simplex
Lichen planus
Psoriasis
Excoriations
Rosacea
Seborr dermatitis
Angular stomatitis
Urticaria
Other inflam cond
Asteatosis
Keratosis pilaris
Pityriasis alba
Striae
Other condition
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