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Cross-national comparisons of IQ have become common since the release of a large dataset of
international IQ scores. However, these studies have consistently failed to consider the
potential lack of independence of these scores based on spatial proximity. To demonstrate the
importance of this omission, we present a re-evaluation of several hypotheses put forward to
explain variation in mean IQ among nations namely: (i) distance from central Africa,
(ii) temperature, (iii) parasites, (iv) nutrition, (v) education, and (vi) GDP. We quantify the
strength of spatial autocorrelation (SAC) in the predictors, response variables and the residuals
of multiple regression models explaining national mean IQ. We outline a procedure for the
control of SAC in such analyses and highlight the differences in the results before and after
control for SAC. We find that incorporating additional terms to control for spatial
interdependence increases the fit of models with no loss of parsimony. Support is provided
for the finding that a national index of parasite burden and national IQ are strongly linked and
temperature also features strongly in the models. However, we tentatively recommend a
physiological – via impacts on host–parasite interactions – rather than evolutionary
explanation for the effect of temperature. We present this study primarily to highlight the
danger of ignoring autocorrelation in spatially extended data, and outline an appropriate
approach should a spatially explicit analysis be considered necessary.

© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

The measurement of intelligence is a controversial field
(Gould 1981; Jensen 1982), particularly where comparisons
are made among races (Hunt & Carlson 2007) or nations
(Lynn & Vanhanen 2006). The recent compilation of an
international dataset of IQ results from a wide range of
countries (Lynn & Vanhanen 2006) has made possible broad
comparisons between nations, of which a great many have
already been published (see Wicherts, Dolan, & van der Maas
2010 for a review of this literature). While criticisms have
been levelled at how this IQ dataset was collated (Wicherts,
Dolan, & van der Maas 2010), there are statistical issues with
international comparisons even with perfectly-collated data
due to the potential lack of independence of individual data
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points driven by spatial proximity. We first highlight the
general nature of this problem and explain why it matters.
We then re-evaluate a set of hypotheses that have been put
forward to explain variation in national IQ as a case study to
provide guidance for future studies. Note that while the
global variation in mean national IQ has received consider-
able recent attention, it remains debateable whether varia-
tion in national IQ is a strict reflection of variation in
underlying cognitive abilities that they are proposed to
measure, since their psychometric properties may also vary
across space (Wicherts, Dolan, Carlson, & van der Maas 2010)
and time (Wicherts et al. 2004). For example, recent work has
indicated that IQ score may vary with individual motivation,
and that this simple phenomenon may confound relation-
ships between individual IQand late-life outcomes (Duckworth
et al. in press). Thus, while we have followed others in focusing
on national mean IQ as the key dependent variable of interest,
we recognise at the outset that it has significant limitations as a
measure of latent intelligence.
ference and spatial patterns in correlates of IQ, Intelligence
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2. Why spatial autocorrelation matters

Recently, Gelade (2008) used spatial autocorrelation
analysis to show that nations that are geographical neigh-
bours have more similar mean IQs than nations that are far
apart. One might equally find positive autocorrelation in
candidate predictor variables of national mean IQ such as
average temperature, or national per capita income, reflecting
Tobler's (1970) First Law of Geography: “everything is related
to everything else, but near things are more related than
distant things”.

Acknowledgement of spatial autocorrelation in response
variables and/or their potential predictors is extremely
important. As an example from the intelligence literature,
nearby nations may have similar sized values of a response
variable (e.g. national IQ) and similar sized values of any
given predictor (e.g.mean temperature). This associationmay
stem from a causal relationship, i.e. the sites share a similar
climate regime and this results in a similar national mean IQ.
However, it may be that there are one or more underlying
factors that drive both variables, resulting in a correlation
without a causal relationship. One such example is local
movement of peoples between countries that share similar
temperature attributes simply through spatial proximity.
Thus, the apparent association between the two variables
may be due to their proximity rather than independently
driven causal relationships. Classical significance testing is
based on the assumption of independence and if one cannot
be confident that each data point represents an independent
realisation of the same causal process, the significance values
become unreliable. It seems intuitively unreasonable, for
example, to compare data for France, Germany and Belgium
with Ghana, Togo and Benin, assuming each to be entirely
independent. We have illustrated precisely this problem in
Fig. 1. Countries on the same continent are more similar to
one another than to countries on different continents both in
terms of national mean IQ and any number of potential
Fig. 1. The relationship between national mean IQ (LVE) and IPD (daily-
adjusted life years due to infectious and parasitic diseases) for 137 countries
grouped by continent. Note the clear lack of independence of the data, with
African countries consistently exhibiting high IPD and low mean IQ, while
European countries consistently exhibit low IPD and high mean IQ. It is
unlikely that these spatially dependent relationships arise as independen
realisations of the same causal process.
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tical in
predictors (e.g. disease burden as shown in Fig. 1 and as
hypothesised by Eppig, Fincher, & Thornhill 2010). Additional
statistical controls must be taken into account to explicitly
deal with the spatial relationships among data points.
Specifically, without controlling for autocorrelation, tests of
association between spatially autocorrelated variables can
lead to an inflated proportion of Type I errors (rejection of the
null hypothesis when true), since the effective sample size is
always smaller than the total number of genuinely indepen-
dent data points (Clifford, Richardson, & Hemon 1989;
Legendre & Fortin 1989; Legendre & Legendre 1998). The
problemmay also be more severe than simply inflating Type I
error rate. In particular, Lennon (2000) argued that correla-
tions between an autocorrelated response variable and a set
of candidate predictors will be strongly biassed in favour of
identifying autocorrelated predictors as significant over non-
autocorrelated predictors.

Whilemanypapers have highlighted theproblemsposedby
spatial autocorrelation in data, far fewer studies have offered a
solution (Dale & Fortin 2002). These solutions include discard-
ing data, adjusting the Type I error rate, adjusting the effective
sample size to control for lack of independence and accounting
for spatial structure directly in the fitted model (Dale & Fortin
2002). Whatever the remedy, one simply cannot ignore spatial
autocorrelation and hope for the best (Beale, Lennon, Yearsley,
Brewer, & Elston 2010). Of course, it is quite possible for a
spatially autocorrelated predictor to generate independent yet
spatially autocorrelated responses when the response variable
would not otherwise be autocorrelated. Using the example
above, a positive correlation between national mean IQ and
temperature would, by virtue of the spatial structure in
temperature, produce a spatial structure in national IQ. Thus
the two variableswould be spatially autocorrelated butwith an
independent relationship. Therefore, conservatively controlling
for spatial autocorrelation in predictor and response can “throw
the baby out with the bathwater” and leave researchers with
little additional variation to explain other than processes
operating at different (usually smaller) spatial scales. Arguably
therefore, controlling for a lack of spatial independence is only
essential when the residuals of fitted models continue to show
significant spatial signature (Diniz-Filho, Bini, &Hawkins 2003)
above and beyond those accounted for by the predictor, which
will arise when the response continues to show a lack of
independence even after controlling for the predictor's effect.
Here we adopt this conservative approach in re-evaluating
competing hypotheses to explain geographical patterns in
national mean IQ. We show that spatial autocorrelation is
present not only in the predictors of national mean IQ, but also
in the residuals ofmodels used to describe national IQ. The best
fitting models exhibit greater explanatory power after control
for spatial autocorrelation so, rather thanobliterate anypattern,
they remain capable of yielding insights into the question of
how and why IQ varies across nations.
3. Competing hypotheses to explain geographical variation
in mean IQ

Since Lynn and Vanhanen (2001) published their mono-
graphs on geographical variation in IQ, a number of competing
hypotheses have emerged to explain variation between
ference and spatial patterns in correlates of IQ, Intelligence
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countries. We present a subset of representative hypotheses
which can be classified using three broad categories:

Evolutionary hypotheses:

• Distance from the environment of evolutionary adaptedness
(hereafter, “DEEA”) (Kanazawa 2008)— Kanazawa proposed
that the human brain was adapted to a particular ancestral
environment: the savannah of central Africa. In order to
exploit environments that differ from this habitat, the
human brain would need to be able to adapt to solve new
challenges. Kanazawa proposes that this requirement for
greater intelligence is what selected for higher-IQ individuals
in locations further from the environment of evolutionary
adaptedness (EEA).

• Temperature (Kanazawa 2008; Templer & Arikawa 2006) —
In a similar hypothesis, a variety of authors have suggested
that cold weather and harsh winters select for higher
intelligence to be able to cope with the extremes of climate.

Physiological hypotheses:

• Nutrition (Lynn 1990) — Lynn observed that changes in
height and head size were occurring over time. He
hypothesised that this was the result of increasing levels
of nutrition, citing evidence that nutritional deficiencies
retard growth. Citing correlations between head size, brain
size and IQ, Lynn then proposes that increases in nutrition
are also increasing national mean IQ.

• Parasite burden (Eppig et al. 2010) — Significant interna-
tional variation in IQ can be explained by variation in the
disability-adjusted life years (DALY, a measure of disease
burden) due to parasitic and infectious disease. The
reasoning behind this hypothesis is that the response to
parasites by the immune system requires energy which can
then not be used in cognitive development.

Socioeconomic hypotheses:

• Education (Barber 2005) — This hypothesis assumes that
the amount of time put into education is related to the
extent of cognitive development, which then influences IQ.
Evidence for such a causal relationship has been presented
using longitudinal studies (e.g. Richards & Sacker 2003).
Marks (2010) has argued that geographical variation in IQ is
purely an artefact of literacy levels. However, literacy data
are no longer collected in many high-income countries
which are typically considered to be 99% literate (e.g.United
Nations Development Programme 2009). Here we assume
that Marks' hypothesis based on literacy can be tested using
data on education.

• Gross domestic product (GDP) (Lynn & Vanhanen 2002) —

GDP per capita is related to development which, in turn, is
related to the average amount of education. For reasons
described in the previous hypothesis, it might be expected
that a higher general level of education would result in
higher IQ.

All studies cited above have provided significant statistical
results to support their hypotheses. However, none so far has
either tested for or controlled for the spatial structure of the
data in a rigorous way.
Please cite this article as: Hassall, C., & Sherratt, T.N., Statistical in
(2011), doi:10.1016/j.intell.2011.05.001
3.1. Outline of the analysis

Webegin by describing the sources for our data (which are
provided in Appendix 1). We then demonstrate the extent of
the spatial autocorrelation in the raw predictor and response
variables. We show that strong correlations exist between all
six candidate predictors and three measures of national mean
IQ, even when spatial autocorrelation is taken into account.
We use an exhaustive model selection method to find the
most parsimonious model to explain variation in national
mean IQ. Next, and most importantly, we show that the
residuals of these best-fit multiple regression models exhibit
spatial autocorrelation, which even by the least conservative
standardsnecessitates the control of this autocorrelation in the
analysis of the model (Diniz-Filho et al. 2003). Finally, we then
carry out the model selection procedure, this time including
control for SAC.

3.2. Data sources

Data sources were used mostly as specified in Eppig et al.
(2010): national IQ data were taken from Lynn and Vanhanen
(2006)with 17 alternative values fromWicherts, Dolan, and van
der Maas (2010); disability life-adjusted year (DALY) values for
infectious and parasitic diseases (hereafter “IPD”) and nutritional
deficiencies (“Nut”) were generated by the WHO (2004);
average years in education (“AVED”), % population reaching
enrolment in secondary education (“Sec_E”) and % population
completing secondary education (“Sec_C”) from Barro and Lee
(2010) and data at http://www.barrolee.com/ for 2010; andGDP
per capita (“GDP”) from the CIA (2007). Three IQ datasets were
defined, as in Eppig et al.: Lynn and Vanhanen's (2006) data
basedonlyoncensuses (“LVCD”), LynnandVanhanen'sdatawith
estimates for missing values (“LVE”) and LVE with the 17
alternative values from Wicherts, Dolan, and van der Maas
(2010) (“WEAM”). Distance from the point 5°S, 25°E (the
“environment of evolutionary adaptedness”) to the centroid of
each country (“DEEA”)was calculated in ArcGIS v9.2 (ESRI, 2006).
Centroids were also used in subsequent control for SAC. As an
indexof temperature,we calculated themean temperatureof the
coldest quarter (“MTCQ”) for each country using the WORLD-
CLIM dataset (Hijmans, Cameron, Parra, Jones, & Jarvis 2005) in
ArcGIS v9.2 (ESRI, 2006). Countries lacking any data were
excluded leaving a total of 137 countries for the comparison
(Table S1). IPD, Nut, GDP and DEEA were log-transformed for
normality. The three education measures were highly collinear
(Sec_E vs. Sec_C, r=0.942, pb0.001; Sec_E vs. AVED, r=0.935,
pb0.001; Sec_C vs. AVED, r=0.892, pb0.001). Therefore, the
three education variables were entered into a principal compo-
nents analysis to produce a single education measure (“ED”)
from the first principal component which explained 97.7% of the
variance in the three measures.

3.3. Data analysis

3.3.1. SAC in predictors and responses
A statistical measure of spatial autocorrelation, Moran's I,

was calculated for each of the three national IQ datasets (the
response variables) and the six predictors described above
and in Table 1. An alternative measure of SAC is Geary's C,
which is approximately inversely related, though not identical,
ference and spatial patterns in correlates of IQ, Intelligence
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Table 1
Three measures of national IQ and six predictor variables with the extent of spatial autocorrelation (global Moran's I). Each of these variables exhibit highly
significant (denoted ⁎⁎⁎) spatial structuring, in that we can readily reject the null hypothesis of no spatial structure (pb0.001). N=137, except for LVCD where
N=88.

Variable Abbreviation Moran's I

National IQ (Lynn and Vanhanen including estimates) LVE 0.312⁎⁎⁎

National IQ (Lynn and Vanhanen with Wicherts et al. (2010) alternative values) WEAM 0.286⁎⁎⁎

National IQ (Lynn and Vanhanen's census data) LVCD 0.253⁎⁎⁎

Infectious and parasitic disease burden IPD 0.321⁎⁎⁎

Nutritional deficiency burden Nut 0.199⁎⁎⁎

Mean temperature of the coldest quarter MTCQ 0.275⁎⁎⁎

Education Ed 0.205⁎⁎⁎

Gross domestic product (per capita) GDP 0.221⁎⁎⁎

Distance from the environment of evolutionary adaptedness DEEA 0.359⁎⁎⁎
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toMoran's I (Sokal & Oden 1978).We useMoran's I as it gives a
moreglobal indicator of spatial autcorrelationwhileGeary's C is
more sensitive to local differences. Moran's I also tends to
perform better in ecological analyses, describing patternsmore
cleanly and being easier to interpret (Legendre & Fortin 1989).

A distance matrix was first calculated based on great circle
distances between each pair of country centroids using the
“distCosine” function in the R package geosphere (Hijmans,
Williams, & Vennes 2011). Great circle distances take into
account the curvature of the earth when calculating distances
between two sets of latitude–longitude coordinates. The
“Moran.I” function in the R package APE (Paradis, Claude, &
Strimmer2004)wasused to calculate theglobalMoran's I value
for each of the nine variables. We have attached the R code for
this operation in Appendix 2. To further illustrate the pattern of
SAC in the data, the three IQ variables and IPD, highlighted as
the most important predictor in a recent analysis (Eppig et al.
2010) were analysed in SAM v4.0 (Rangel, Diniz-Filho, & Bini
2006) over a range of distances. SAM (“Spatial Analysis in
Macroecology”) is free software available from http://www.
ecoevol.ufg.br/sam/. This software provides tools to carry out a
variety of analyses including spatial eigenvector mapping, the
quantificationof SACusingMoran's I, andmultimodel inference
using Akaike's Information Criteria (AIC).

3.3.2. Correlations between national mean IQ and predictors
Correlations between each of the predictors and the three

national IQ indices were assessed using Pearson product–
moment correlations (Table 2). Having previously demon-
strated the presence of spatial autocorrelation in the pre-
dictors and response variables, it was clear that the degrees of
freedom in the tests would be artificially inflated due to the
lack of independence between data points. The “spatial
correlation” function in SAM was used to recalculate the
geographically effective degrees of freedom according to the
method of Clifford et al. (1989). This allows a more accurate
calculation of statistical significance.

3.3.3. First model construction
Having demonstrated that all predictor variables are

strongly correlated with all three national IQ indices, even
when the lack of independence is controlled for, we were left
with all six predictor variables as viable predictors for linear
regression. Extensive collinearity exists within the predictors,
which poses problems for using stepwise model selection to
identify subsets of variables for use in regression models.
Please cite this article as: Hassall, C., & Sherratt, T.N., Statistical in
(2011), doi:10.1016/j.intell.2011.05.001
Wicherts, Borsboom, and Dolan (2010) highlight this collin-
earity among socioeconomic and health variables – and
suggest that national mean IQ is simply another indicator of
development – although the same is true for most predictors
of national IQ. If left unchanged, multicollinearity (linear
relationship between two or more variables) results in an
inflation of the variance associated with parameter estimates
within multiple regression models. However, cases of multi-
collinearity can be identified using variance inflation factors
(VIFs) to determine the extent to which the variance
associated with each term is increased by the collinearity,
where VIFN10 is considered “high”multicollinearity (Kutner,
Nachtsheim, Neter, & Li 2005). We avoid this problem by
using an “exhaustive search” method to compare all possible
combinations of variables (Graham 2003). The relative
performance of the models was then judged using AIC
controlling for small sample size (AICc; Kutner et al. 2005).
This measure of model performance incorporates goodness-
of-fit as well as the number of explanatory variables to rank
models relative to one another to indicate the most
parsimonious models. Alternative model selection methods
using only goodness of fit (e.g. R2 or adjusted R2) neglect the
principle of parsimony, while the Bayesian information
criterion (BIC, also known as the Schwartz criterion) rests
on assumptions that are rarely met with empirical data
(Johnson & Omland 2004). A ΔAICc (the difference between
the AICc of a given model and that of the top model) of b2
indicates that there is substantial evidence for the given
model above alternative candidate models, 3bΔAICcb7
indicates considerably less support and ΔAICcN10 indicates
essentially no support (Burnham & Anderson 2002). We also
calculate adjusted R2 (the proportion of overall variance
explained by the fitted model) as an absolute measure of
goodness-of-fit to complement the relativemeasure provided
by AICc. Six predictors yield a potential 63 models including a
null model (with only a floating intercept) and each of these
was constructed in R for each of the three IQ variables. The
resulting models were compared using the “aictab” function
in the AICcmodavg package (Mazerolle 2010) in R. We have
provided the R code for this stage of the analysis in
Appendix 3.
3.3.4. SAC in model residuals
As stated above, the presence of SAC in model residuals

indicates a need to account for SAC in the model itself. We
tested for evidence of spatial autocorrelation in the best
ference and spatial patterns in correlates of IQ, Intelligence
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Table 2
Product moment coefficients and significance of correlations between three national IQ measures (see text for details) and eight putative predictors (see text for
definitions) before (r and p) and after (p*=corrected p-value, df*=estimated corrected degrees of freedom) control for spatial autocorrelation. Degrees of
freedom prior to correlation for autocorrelation are 135 for LVE and WEAM and 85 for LVCD.

LVE (n=137) WEAM (n=137) LVCD (n=88)

r p p* df* r p p* df* r p p* df*
IPD −0.854 b0.001 0.002 7.65 −0.812 b0.001 0.003 8.60 −0.855 b0.001 0.003 7.17
Nut −0.748 b0.001 0.002 12.76 −0.718 b0.001 0.002 14.09 −0.753 b0.001 0.003 10.95
MTCQ −0.642 b0.001 0.026 9.73 −0.630 b0.001 0.022 10.87 −0.671 b0.001 0.018 9.83
Ed 0.638 b0.001 0.008 13.81 0.606 b0.001 0.009 15.32 0.707 b0.001 0.005 11.96
GDP 0.717 b0.001 0.003 12.76 0.680 b0.001 0.004 14.18 0.795 b0.001 0.002 10.32
DEEA 0.605 b0.001 0.031 10.74 0.531 b0.001 0.049 12.15 0.594 b0.001 0.011 15.29

ig. 2. Spatial autocorrelation in (A) three measures of national IQ, and (B) a
roposed explanatory variable, namely the incidence of infectious and
arasitic diseases (IPD, see text for details). Moran's I is a measure of spatial
ustering. A positive Moran's I indicates that values are more similar at a
iven distance than would be expected by chance, while a negative Moran's I
dicates that values are less similar than would be expected.
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fitting models (for which ΔAICcb2) for each of the three IQ
variables. This was done by calculating global Moran's I in R,
as described above, for the residuals of each of the models.

3.3.5. Control for SAC
Having demonstrated that the residuals of the best fitting

models exhibited spatial autocorrelation, the model selection
procedure was carried out a second time with a control for
SAC. The incorporation of SAC into these models was through
a technique called “spatial eigenvector mapping” (SEVM) and
was carried out in SAM. This method decomposes the spatial
relationships between data into explanatory variables which
capture spatial effects at different spatial resolutions. The
method can be viewed as equivalent to a principal compo-
nents analysis carried out on the distance matrix of the data
(Dormann et al. 2007). Whereas selection of relevant
components in PCA hinges on their eigenvalues, we based
selection of eigenvectors on the minimisation of Moran's I (to
a threshold of 0.05) in the model residuals. The resulting
eigenvectors are then included in all models during themodel
selection procedure. Global Moran's I was calculated for the
residuals of each of the best fitting (ΔAICcb2) models to
evaluate the success of the method.

4. Results

4.1. SAC in predictors and responses

LVE andWEAMdata showed a positive autocorrelation that
was significantly (pb0.001)different fromzero at eachdistance
up to 3500 km then a significant (pb0.01) negative autocor-
relation up to 16,000 km. LVCD showed a significant (pb0.001)
positive autocorrelation up to 3,500 km and a significant
(pb0.001) negative autocorrelation to 10,000 km after which
there was no significant spatial structure (Fig. 2). Comparing
predictors and response variables, we find that SAC is higher in
national IQ than in national temperature (Table 1), as shown by
Gelade (2008). AsGelade points out, there is an intuitive spatial
autocorrelation involving temperature where two neighbour-
ing nations tend to have amore similar climate than twomore-
distant nations. That national IQ exhibits stronger SAC than
temperature emphasises the strength of the pattern. In fact, the
only variablewith higher SAC than national IQwas the distance
from the environment of evolutionary adaptedness (DEEA),
which is itself a distancemeasure.What this SAC in DEEA tells us
is that two points that are closer together are a more-similar
distance from another given point. This near-tautological
Please cite this article as: Hassall, C., & Sherratt, T.N., Statistical in
(2011), doi:10.1016/j.intell.2011.05.001
example of SAC is instructive in demonstrating the importance
of accounting for lack of independence in analyses.

4.2. Correlations between national IQ and predictors

Before control for SAC, there were strong, significant
(pb0.001 in all cases) correlations between all six predictor
variables and the three national IQ measures (Table 2). The
proportion of variance in the national IQ measures that was
explained by the individual predictors range from 28% to 73%,
with the strongest correlations between national IQ and IPD
and the weakest between IQ and DEEA. When SAC was
controlled for in these pairwise correlations there were still
significant correlations at the reduced degrees of freedom. It
is worth noting that the variables with higher SAC in Table 1
(IPD, DEEA and MTCQ) are those which have the greatest
reduction in degrees of freedom in Table 2. However, this
F
p
p
cl
g
in
ference and spatial patterns in correlates of IQ, Intelligence
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method still gives us no reason to choose between the
competing hypotheses as all terms remain significant.

4.3. First model construction

An exhaustive search of models prior to control for SAC
yielded very similar models for each of the three national IQ
measures (Table 3). In each of the LVE, WEAM and LVCD
measures, IPD, MTCQ and DEEA formed the top model and
were contained in all models where ΔAICcb2. Nut also
featured in the second-ranking models in each case, and GDP
featured in the third- and fourth-rankingmodels for LVCD. All
models explain a large proportion of the variance in the
response variables (between 72.3 and 81.1%).

4.4. SAC in model residuals

Examining the residuals for SAC we see that there is highly
significant autocorrelation in the residuals of all the topmodels
(Table 3). While this SAC is not as strong as that present in the
raw data (Table 1), it provides strong evidence for a continuing
effect of spatial interdependence in the models.

4.5. Control for SAC

The inclusion of spatial eigenvectors in the model
selection procedure, results in a change in our interpretation
of the results. The first is that the explanatory power of all
models increases (note the adjusted R2 values in Table 3). The
lower AICc values demonstrate that this increase in goodness-
of-fit does not come at a cost of decreased parsimony. In fact,
the model fit according to AIC is substantially better after
control for SAC, with ΔAICc values comparing best-fit models
before and after SAC of 44.875, 31.286 and 24.185 for LVE,
WEAM and LVCD, respectively.

Second, the SAC of the model residuals of two of the three
measures was non-significant after control for SAC. SAC in the
residuals of LVE was particularly high in the original models
(Table 3) and, although the SEVM approach reduced SAC
considerably, it was still significant. It is worth noting that the
Table 3
Model selection table for exploratory analysis before (SAC is “no”) and after (SAC is
text and Table 1. Significance of Moran's I is indicated by: ⁎⁎⁎pb0.001, NSpN0.05. N
significant. This is due to the SEVM routine acting to reduce the magnitude of SAC b
pattern.

Response SAC Model K

LVE No IPD+MTCQ+DEEA 5
IPD+MTCQ+DEEA+Nut 6

Yes IPD+MTCQ+SEVM 8
WEAM No IPD+MTCQ+DEEA 5

IPD+MTCQ+DEEA+Nut 6
Yes IPD+MTCQ+SEVM 8

IPD+MTCQ+DEEA+SEVM 9
LVCD No IPD+MTCQ+DEEA 5

IPD+MTCQ+Nut+DEEA 6
IPD+MTCQ+GDP+DEEA 6
IPD+MTCQ+Nut+GDP+DEEA 7

Yes IPD+MTCQ+Nut+SEVM 8
IPD+MTCQ+GDP+SEVM 8
IPD+MTCQ+SEVM 7
IPD+MTCQ+Nut+GDP+SEVM 9

Please cite this article as: Hassall, C., & Sherratt, T.N., Statistical in
(2011), doi:10.1016/j.intell.2011.05.001
SEVM approach was designed not to render SAC non-
significant, but to reduce it below a certain threshold
(Moran's Ib0.05) where it has a negligible effect. Using this
criterion, the procedure was successful.

Third, the composition of the models changes. There is
consistent evidence for an effect of IPD and MTCQ in the top
models before controlling for SAC and this remains after the
control is applied (Table 3). The most noticeable difference in
model composition is the omission of DEEA (distance from the
environment of evolutionary adaptedness) from most of the
models after control for SAC. Having been present in all top
models prior to control for SAC, DEEA occurs only once in the
second-best fit model for the WEAM IQ measure. Nut also
seems to increase in importance but only in the LVCD IQ
measure, where GDP also remains in the best-fit models.

5. Discussion

We have highlighted the importance of dealing with
spatial autocorrelation when analysing spatial patterns, and
re-examined competing hypotheses explaining geographical
variation in national IQ to illustrate our case. Cross-national
research in mean IQ is a relatively new field but has already
produced a number of studies which have sought predictors
of variation in IQ. Such putative predictors have included
temperature and skin colour (Templer & Arikawa 2006),
evolutionary novelty (Kanazawa 2008), irreligion (Lynn,
Harvey, & Nyborg 2009), inbreeding (Woodley 2009) and a
range of economic factors (e.g. Dickerson 2006). While these
studies may provide interesting results, none have explicitly
considered spatial autocorrelation. It has long been appreci-
ated (e.g. Clifford et al. 1989) that not accounting for spatial
autocorrelation in the response variable results in inflated
significance due to overestimation of the true sample size of
data. While this is true for any spatial analysis, different fields
have taken different lengths of time to address the problem.
Geography was among the first (Cliff & Ord 1970), with
ecology following later (Legendre 1993) and other sub-
disciplines of biology only now incorporating the issues into
their paradigms (Valcu & Kempenaers 2010). In this paper we
“yes”) control for spatial autocorrelation. For definitions of model terms see
ote that after control for SAC, Moran's I for the model explaining LVE is stil
elow a specific threshold (0.05), rather than reducing the significance of the

AICc ΔAICc wi R2 (adj) Moran's I

836.695 0.000 0.368 0.811 0.161⁎⁎⁎

838.194 1.499 0.174 0.811 0.164⁎⁎⁎

791.820 0.000 0.312 0.868 0.047⁎⁎⁎

869.189 0.000 0.378 0.724 0.105⁎⁎⁎

870.694 1.505 0.178 0.723 0.106⁎⁎⁎

837.903 0.000 0.271 0.786 0.012NS

838.751 0.848 0.177 0.787 0.006NS

545.176 0.000 0.254 0.787 0.099⁎⁎⁎

545.278 0.102 0.241 0.790 0.101⁎⁎⁎

545.616 0.441 0.204 0.789 0.100⁎⁎⁎

547.079 1.903 0.098 0.789 0.101⁎⁎⁎

520.991 0.000 0.194 0.845 −0.003NS

521.294 0.303 0.167 0.845 0.004NS

521.906 0.914 0.123 0.841 0.002NS

522.342 1.350 0.099 0.845 −0.001NS
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highlight the issue of spatial autocorrelation in the context of
spatial variation in intelligence.

Correcting for SAC in conjunction with exhaustive model
selection enables us to circumvent the twin problems of spatial
autocorrelation and collinearity among variables. This permits
the most comprehensive and statistically rigorous assessment
of six potential hypotheses explaining variation in geographical
patterns in IQ that has yet been conducted. When a compre-
hensive model comparison was conducted to analyse national
variation in IQ scores, then infectious and parasitic diseases
(IPD) and temperature (mean temperature of the coldest
quarter) were the only two variables consistently included in
models. Mortality and morbidity resulting from nutritional
deficiencies (Nut), GDP, and distance from the environment of
evolutionary adaptedness (DEEA) also feature in some of the
best fitting models. However, it is worth noting that DEEA

becomes far less important in models after controlling for SAC.
This is not surprising given that the variable itself is, by
definition, autocorrelated across space. It seems likely that the
distance from the environment of evolutionary adaptedness
has no causal link with national mean IQ.

The case for an effect of infectious and parasitic disease
burdens influencing national IQ has been made elsewhere
(Eppig et al. 2010). Previously, the relationship between
temperature and national mean IQ has been explained in
terms of the greater cognitive demands of surviving in colder
environments (Templer & Arikawa 2006). Given the strength
of evidence for the physiological effects of disease, it may be
that temperature is acting not through an impact on the
environment but through an impact on the interaction
between humans and their diseases. Temperature influences
a number of disease-related parameters such as disease
distribution (Guernier, Hochberg, & Guégan 2004), transmis-
sion seasons (e.g. malaria, Hay, Guerra, Tatem, Noor, & Snow
2004), the ability of insect vectors to transmit diseases
(Cornel, Jupp, & Blackburn 1993) and the development and
survival of parasites and host susceptibility (Harvell et al.
2002). It may be that temperature is having an effect on
national mean IQ by mediating the response to infectious
diseases rather than via environmental complexity.

We have highlighted SAC as a cause for concern in these
analyses of geographic variation in IQ and briefly mentioned
multicollinearity in the predictor variables as a second issue.
While we use exhaustive (or “all-subsets”) modelling to avoid
issues with collinear predictor variables andmodel construction,
an alternative method would be structural equation modelling
(SEM, or “path analysis”) (Graham 2003); (van der Maas et al.
2006). SEM involves the explicit, a priori statement of causal and
correlative relationships between variables and provides esti-
mates of the relative strengths of interactions. Where, for
example, changes in sanitation are thought to cause changes in
disease, or changes in nutrition cause changes in infantmortality,
these effects can be stated and the direct and indirect effects on
national IQ can be assessed. While this approach shows promise
for testing hypotheses of national IQ variation, there are cases in
which the nature of relationships is unclear. For example, does
GDP exert a causal relationship on other factors? Does education
improve nutrition and/or disease incidence?

Socioeconomic factors do not feature strongly in the
analysis when other factors are taken into account. GDP is
present in some of the best-fitting models but it is unclear as
Please cite this article as: Hassall, C., & Sherratt, T.N., Statistical in
(2011), doi:10.1016/j.intell.2011.05.001
to how this variable is acting. There has been debate in the
literature over the competence of IQ tests to accurately
measure intelligence over a range of education or literacy
levels (Barber 2005), with some researchers claiming that
global variation in IQ is entirely an artefact of varying literacy
(Marks 2010). We find no evidence to support this. However,
we stress that our measure of education, despite being a
composite statistic will not have captured all aspects of
educational experience, so as always, alternative measures
could have given different results. Intriguingly, cross-fostering
studies have demonstrated that socio-economic factors can
influence IQ, with children from high socioeconomic status
(SES) parents who were subsequently fostered by low SES
parents having lower IQ scores than those children from high
SES families whowere then fostered by other high SES parents.
Conversely, children from low SES parents who were fostered
by high SES foster parents exhibited higher IQ scores than did
children from low SES parents who were fostered by low SES
foster parents (Capron & Duyme 1989). It is worth noting that
this studywas conducted only in France, and so the resultsmay
not be applicable to a global studywith far greater variations in
SES. It may be that SES acts at a smaller scale that is dwarfed by
other factors on a global level.

Like all correlative studies, we cannot ascribe causality on
the basis of statistical significance and so all potential relation-
ships identified require further investigation. Here is not the
place to present any alternative hypotheses in depth, especially
on the basis of automated searches for candidatemodels rather
thandirected tests. However, it is possible that reducedparasite
prevalencemay play a role in the generation of the Flynn Effect,
the apparent increase in mean IQ over time (but cf. Wicherts
et al. 2004). Other studies have shown that generational
increases in intelligence are focused at the lower end of the IQ
distribution (Colom, Lluis-Font, & Andrés-Pueyo 2005). Para-
sites in host populations commonly exhibit aggregation, with a
few individuals carrying large numbers of parasites and most
individuals carrying few (Anderson&Gordon 1982). It could be
reasoned that either improved hygiene or clinical intervention
for diseases and parasites is benefitting those few heavily
infected individuals disproportionately and, if those individuals
also exhibit low IQ as a result of their disease burden, IQ would
also increase to the greatest extent at the lower end of the scale.
Thus, a parasite-induced depression in IQ with subsequent
improvement due to hygiene and medicine could provide an
explanation for the Flynn Effect (Eppig et al. 2010).

Controlling for autocorrelation may remove real biological
patterns and this has been offered as an argument against
controlling for both spatial (Legendre 1993) and phylogenetic
(Ricklefs & Starck 1996) autocorrelation. However, any
statistical analysis with an inherent spatial component should
consider spatial autocorrelation, if only to demonstrate that
its control is not necessary. Failure to account for this lack of
independence in data violates statistical assumptions and
renders statistical inference invalid. The initial dogmatism
with which controls for spatial and phylogenetic autocorre-
lationwere enforced has now givenway to an acceptance that
such controls are not always necessary. However, with the
advent of numerous tools and techniques (such as those
presented here) for assessing this need, we encourage
researchers to at least give the topic due consideration as it
can substantially influence results.
ference and spatial patterns in correlates of IQ, Intelligence
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Supplementary materials related to this article can be
foundonline at doi 10.1016/j.intell.2011.05.001.

Acknowledgements

We would like to thank the Carleton University ECO-EVO
Group for discussion. Conor Dolan, Douglas Detterman, Jelte
Wicherts and an anonymous referee provided comments
which greatly improved the manuscript. CH was supported
by anOntarioMinistry of Research and Innovation Postdoctoral
Fellowship and TNS is funded by NSERC.

References

Anderson, R. M., & Gordon, D. M. (1982). Processes influencing the distribution
of parasite numbers within host populations with special emphasis on
parasite-induced host mortalities. Parasitology, 85, 373–398.

Barber, N. (2005). Educational and ecological correlates of IQ: A cross-national
investigation. Intelligence, 33, 273–284.

Barro, R. J., & Lee, J. -W. (2010). A new data set of educational attainment in the
world, 1950–2010 (Vol. 15902). Cambridge, USA: National Bureau of
Economic Research.

Beale, C. M., Lennon, J. J., Yearsley, J. M., Brewer, M. J., & Elston, D. A. (2010).
Regression analysis of spatial data. Ecology Letters, 13, 246–264.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel
inference: A practical information-theoretic approach (2nd ed.). New York:
Springer-Verlag.

Capron, C., & Duyme, M. (1989). Assessment of effects of socio-economic
status on IQ in a full cross-fostering study. Nature, 340, 552–553.

CIA (2007). CIA 2007 World factbook. https://www.cia.gov/library/
publications/the-world-factbook

Cliff, A. D., & Ord, K. (1970). Spatial autocorrelation: A review of existing and
new measures with applications. Economic Geography, 46, 269–292.

Clifford, P., Richardson, S., & Hemon, D. (1989). Assessing the significance of
the correlation between two spatial processes. Biometrics, 45, 123–134.

Colom, R., Lluis-Font, J. M., & Andrés-Pueyo, A. (2005). The generational
intelligence gains are caused by decreasing variance in the lower half of
the distribution: Supporting evidence for the nutrition hypothesis.
Intelligence, 33, 83–91.

Cornel, A. J., Jupp, P. G., & Blackburn, N. K. (1993). Environmental temperature
on the vector competence of Culex univittatus (Diptera: Culicidae) forWest
Nile Virus. Journal of Medical Entomology, 30, 449–456.

Dale, M. R. T., & Fortin, M. -J. (2002). Spatial autocorrelation and statistical
tests in ecology. Ecoscience, 9, 162–167.

Dickerson, R. E. (2006). Exponential correlation of IQ and the wealth of
nations. Intelligence, 34, 291–295.

Diniz-Filho, J. A. F., Bini, L. M., & Hawkins, B. A. (2003). Spatial autocorrelation
and red herrings in geographical ecology. Global Ecology and Biogeography,
12, 53–64.

Dormann, C. F., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G.,
et al. (2007). Methods to account for spatial autocorrelation in the
analysis of species distributional data: A review. Ecography, 30, 609–628.

Duckworth, A. L., Quinn, P. D., Lynam, D. R., Loeber, R., & Stouthamer-Loeber,
M. (in press). Role of test motivation in intelligence testing. Proceedings
of the National Academy of Sciences.

Eppig, C., Fincher, C. L., & Thornhill, R. (2010). Parasite prevalence and the
worldwide distribution of cognitive ability. Proceedings of the Royal
Society: Series B (Biological Sciences), 277, 3801–3808.

ESRI (2006). ArcGIS v.9.2. Redlands: Environmental Systems Research
Institute, Inc.

Gelade, G. A. (2008). The geography of IQ. Intelligence, 36, 495–501.
Gould, S. J. (1981). The mismeasure of man. New York: W.W. Norton & Co..
Graham, M. (2003). Confronting multicollinearity in ecological multiple

regression. Ecology, 84, 2809–2815.
Guernier, V., Hochberg, M. E., & Guégan, J. -F. (2004). Ecology drives the

worldwide distribution of human diseases. PLoS Biology, 2, e141.
Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S.,

et al. (2002). Climate warming and disease risks for terrestrial and marine
biota. Science, 296, 2158–2162.

Hay, S. I., Guerra, C. A., Tatem, A. J., Noor, A. M., & Snow, R. W. (2004). The
global distribution and population at risk of malaria: Past, present and
future. The Lancet Infectious Diseases, 4, 327–336.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very
high resolution interpolated climate surfaces for global land areas.
International Journal of Climatology, 25, 1965–1978.
Please cite this article as: Hassall, C., & Sherratt, T.N., Statistical in
(2011), doi:10.1016/j.intell.2011.05.001
Hijmans, R. J., Williams, E., & Vennes, C. (2011). Geosphere: Spherical
trigonometry. R package version 1.2-19. http://CRAN.R-project.org/
package=geosphere

Hunt, E., & Carlson, J. (2007). Considerations relating to the study of group
differences in intelligence. Perspectives on Psychological Science, 2, 194–213.

Jensen, A. R. (1982). The debunking of scientific fossils and straw persons.
Contemporary Education Review, 1, 121–135.

Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and
evolution. Trends in Ecology & Evolution, 19, 101–108.

Kanazawa, S. (2008). Temperature and evolutionary novelty as forces behind
the evolution of general intelligence. Intelligence, 36, 99–108.

Kutner, M., Nachtsheim, C., Neter, J., & Li, W. (2005). Applied linear statistical
models (5th ed.). Irwin, CA: McGraw-Hill.

Legendre, P. (1993). Spatial autocorrelation: Trouble or new paradigm?
Ecology, 74, 1659–1673.

Legendre, P., & Fortin, M. -J. (1989). Spatial pattern and ecological analysis.
Vegetatio, 80, 107–138.

Legendre, P., & Legendre, L. (1998). Numerical ecology. Amsterdam: Elsevier
Science.

Lynn, R. (1990). The role of nutrition in secular increases in intelligence.
Personality and Individual Differences, 11, 273–285.

Lynn, R., Harvey, J., & Nyborg, H. (2009). Average intelligence predicts
atheism rates across 137 countries. Intelligence, 37, 11–15.

Lynn, R., & Vanhanen, T. (2001). National IQ and economic development: A
study of eighty-one nations. Mankind Quarterly, 41, 415–435.

Lynn, R., & Vanhanen, T. (2002). IQ and the wealth of nations. Westport, CT:
Praeger.

Lynn, R., & Vanhanen, T. (2006). IQ and global inequality. Augusta, GA:
Washington Summit.

Marks, D. F. (2010). IQ variations across time, race and nationality: An artifact
of differences in literary skills. Psychological Reports, 106, 643–664.

Mazerolle, M. J. (2010). AICcmodavg: Model selection and multimodel
inference based on (Q)AIC(c). R package version 1.13. http://CRAN.R-
project.org/package=AICcmodavg

Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics
and evolution in R language. Bioinformatics, 20, 289–290.

Rangel, T. F. L. V. B., Diniz-Filho, J. A. F., & Bini, L. M. (2006). Towards an
intergrated computational tool for spatial analysis in macroecology and
biogeography. Global Ecology and Biogeography, 15, 321–327.

Richards, M., & Sacker, A. (2003). Life course antecedents of cognitive
reserve. Journal of Clinical Experimental Neuropsychology, 25, 614–624.

Ricklefs, R. E., & Starck, J. M. (1996). Applications of phylogenetically
independent contrasts: A mixed progress report. Oikos, 77, 167–172.

Sokal, R. R., & Oden, N. L. (1978). Spatial autocorrelation in biology 1.
Methodology. Biological Journal of the Linnaean Society, 10, 199–228.

Templer, D. I., & Arikawa, H. (2006). Temperature, skin color, per capita
income, and IQ: An international perspective. Intelligence, 34, 121–139.

Tobler, W. (1970). A computer movie simulating urban growth in the Detroit
region. Economic Geography, 46, 234–240.

United Nations Development Programme (2009). Human development report
2009: Overcoming barriers—Humanmobility and development.NewYork:
Palgrave Macmillan.

Valcu, M., & Kempenaers, B. (2010). Spatial autocorrelation: An overlooked
concept in behavioral ecology. Behavioral Ecology, 21, 902–905.

van der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M.,
Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of
general intelligence: The positive manifold of intelligence by mutualism.
Psychological Review, 113, 842–861.

WHO (2004). Global burden of disease: 2004 update. Geneva, Switzerland:
World Health Organisation.

Wicherts, J. M., Borsboom, D., & Dolan, C. V. (2010). Why national IQs do not
support evolutionary theories of intelligence. Personality and Individual
Differences, 48, 91–96.

Wicherts, J. M., Dolan, C. V., Carlson, J. S., & van der Maas, H. L. J. (2010). Raven's
test performance of sub-Saharan Africans: Mean level, psychometric
properties and the Flynn Effect. Learning and Individual Differences, 20,
135–151.

Wicherts, J. M., Dolan, C. V., Hessen, D. J., Oosterveld, P., van Baal, G. C. M.,
Boomsma, D. I., et al. (2004). Are intelligence tests measurement
invariant over time? Investigating the nature of the Flynn effect.
Intelligence, 32, 509–537.

Wicherts, J. M., Dolan, C. V., & van der Maas, H. L. J. (2010). A systematic
literature review of the average IQ of sub-Saharan Africans. Intelligence,
38, 1–20.

Woodley, M. A. (2009). Inbreeding depression and IQ in a study of 72
countries. Intelligence, 37, 268–276.
ference and spatial patterns in correlates of IQ, Intelligence

http://dx.doi.org/10.1016/j.intell.2011.05.001
https://www.cia.gov/library/publications/the-world-factbook
https://www.cia.gov/library/publications/the-world-factbook
http://CRAN.R-project.org/package=geosphere
http://CRAN.R-project.org/package=geosphere
http://CRAN.R-project.org/package=AICcmodavg
http://CRAN.R-project.org/package=AICcmodavg
http://dx.doi.org/10.1016/j.intell.2011.05.001

	Statistical inference and spatial patterns in correlates of IQ
	1. Introduction
	2. Why spatial autocorrelation matters
	3. Competing hypotheses to explain geographical variation in mean IQ
	3.1. Outline of the analysis
	3.2. Data sources
	3.3. Data analysis
	3.3.1. SAC in predictors and responses
	3.3.2. Correlations between national mean IQ and predictors
	3.3.3. First model construction
	3.3.4. SAC in model residuals
	3.3.5. Control for SAC


	4. Results
	4.1. SAC in predictors and responses
	4.2. Correlations between national IQ and predictors
	4.3. First model construction
	4.4. SAC in model residuals
	4.5. Control for SAC

	5. Discussion
	Acknowledgements
	References


