
LEIBNIZIAN MODAL LOGIC 

11.1 MODAL OPERATORS 

Prominent among philosophically important operators that are apparently inex-
pressible in predicate logic are alethic modifiers, such as 'must', 'might', 'could', 
'can', 'have to', 'possibly', 'contingently', 'necessarily'. The term 'alethic' comes 
from the Greek word for truth, alethea. These words are said to express alethic 
modalities—that is, various modes of truth. Modal logic, in the narrowest sense, 
is the study of the syntax and semantics of these alethic modalities. 

But the term is also used in a broader sense, to designate the study of other 
sorts of propositional modalities. These include deontic (ethical) modalities (ex-
pressed by such constructions as 'it ought to be the case that', 'it is forbidden that', 
'it is permissible that', etc.); propositional attitudes (relations between sentient 
beings and propositions, expressed by such terms as 'believes that', 'knows that', 
'hopes that', 'wonders whether', and so on); and tenses (e.g., the past, present, and 
future tenses as expressed by the various modifications of the verb 'to be': 'was', 
'is', and 'will be'). 

The extension of the term 'modal' to these other forms of modality is no 
fluke; they share important logical properties with alethic modalities. For one 
thing, all of them can be regarded as operators on propositions. Consider, for 
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example, these sentences, all of which involve the application of modal operators 
(in the broad sense) to the single proposition 'People communicate': 

Alethic Operators 

It is possible that people communicate. 
It must be the case that people communicate. 
It is contingently the case that people communicate. 
It could be the case that people communicate. 
It is necessarily the case that people communicate. 

Deontic Operators 

It is obligatory that people communicate. 
It is permissible that people communicate. 
It is not allowed that people communicate. 
It should be the case that people communicate. 

Operators Expressing Propositional Attitudes 

Ann knows that people communicate. 
Bill believes that people communicate. 
Cynthia fears that people communicate. 
Don supposes that people communicate. 
Everyone understands that people communicate. 
Fred doubts that people communicate. 

Operators Expressing Tenses 

It was (at some time) the case that people communicated. 
It was always the case that people communicated. 
It will (at some time) be the case that people communicate. 
It will always be the case that people communicate. 

There are, of course, many more operators in each category. And some of those 
listed, such as 'it is possible that' and 'it could be the case that' are, at least in some 
contexts, semantically identical or synonymous. With the exception of the opera-
tors expressing propositional attitudes, all of those listed here are monadic; they 
function syntactically just like the negation operator 'it is not the case that', prefix-
ing a sentence to produce a new sentence. Thus, for example, the operators 'it is 
necessary that', usually symbolized by the box '•' and 'it is possible that', usually 
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symbolized by the diamond sign ' 0 V are introduced by adding this clause to the 
formation rules: 

If <I> is a formula, then so are DO and OO. 

The operators expressing propositional attitudes, however, are binary. But 
unlike such binary operators as conjunction or disjunction, which unite a pair of 
sentences into a compound sentence, propositional attitude operators take a name 
and a sentence to make a sentence. The place for this name may be quantified, as 
in 'Everyone understands that people communicate'. 

Many modal operators have duals—operators which, when flanked by ne-
gation signs, form their equivalents. The operators '•' and ' 0 ' , for example, are 
duals, as the following sentences assert: 

•O ~ o ~ o 
OO - n - O 

That is, it is necessary that O if and only if it is not possible that not-O, and it is 
possible that O if and only if it is not necessary that not-O. 

There are other duals among these operators as well. Consider the deontic 
operator 'it is obligatory that', which we shall symbolize as 'O', and the operator 
'it is permissible that', which we shall write as 'P\ These are similarly related: 

0<D — ~p~d> 
P3> ~o~o 

That 'O' and 'P' should thus mimic '•' and ' 0 ' is understandable, since obligation 
is a kind of moral necessity and permission a kind of moral possibility. 

There are also epistemic (knowledge-related) duals. The operator 'knows 
that' is dual with the operator 'it is epistemically possible, for . . . that'—the for-
mer representing epistemic necessity (knowledge) and the latter epistemic possibil-
ity. (Something is epistemically possible for a person if so far as that person knows 
it might be the case.) Symbolizing 'knows that' by 'K' and 'it is epistemically 
possible for . . . that' by 'E', we have: 

pKO <-* -pE-O 
pEO -pK-O 

In English: p knows that O if and only if it is not epistemically possible for p that 
not-O; and it is epistemically possible for p that O if and only if p does not know 
that not-O fp', of course, stands for a person). 

There are temporal duals as well. Let 'P' mean 'it was (at some time) the case 
that' and 'H' mean 'it has always been the case that'. Then: 

HO <- -P-O 
PO ~ -H-O 

1 Sometimes 'L' is used instead of and 'M' instead o f ' 0 T h e s e abbreviate the 
German terms for logical (logische)—that is, necessary—truth and possible (mog-
liche) truth. 
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Here 'H' represents a kind of past tense temporal necessity and 'P' a kind of past 
tense temporal possibility. A similar relationship holds between 'it always will be 
the case that' and 'it sometimes will be the case that' and between other pairs of 
temporal operators. 

These systematic logical relationships bear a striking resemblance to two 
familiar laws of predicate logic: 

VxO ~3x~<I> 
«-> -Vx-O 

Are these pairs of dual operators somehow analogous to quantifiers? 

11.2 LEIBNIZIAN SEMANTICS 

Leibniz, who was among the first to investigate the logic of alethic operators, in 
effect suggested that they are. His semantics for modal logic was founded upon a 
simple but metaphysically audacious idea: Our universe is only one of a myriad 
possible universes, or possible worlds. Each of these possible worlds comprises a 
complete history, from the beginning (if there is a beginning) to the end (if there is 
an end) of time. 

Such immodest entities may rouse skepticism, yet we are all familiar with 
something of the kind. I wake up on a Saturday; several salient possibilities lie 
before me. I could work on this book, or weed my garden, or take the kids to the 
park. Whether or not I do any of these things, my ability to recognize and entertain 
such possibilities is a prominent feature of my life. For ordinary purposes, my 
awareness of possibilities is confined to my doings and their immediate effects on 
the people and things around me. Yet my choices affect the world. If I spend the 
day gardening, the world that results is a different world than if I had chosen 
otherwise. Leibnizian metaphysics, then, can be seen as a widening of our vision 
of possibility from the part to the whole, from mere possible situations to entire 
possible worlds. 

Possible worlds figure most notoriously in Leibniz's theodicy. God, in con-
templating the Creation, surveyed all possible worlds, says Leibniz, and chose to 
actualize only the best—ours. Since ours is the best of all possible worlds, the 
degree of evil or suffering it contains is unavoidable—as we would see if only we 
had God's wisdom.2 

What interests the logician, however, is not how Leibniz used possible worlds 
to rationalize actual miseries, but how he used them to adumbrate an alethic 
modal semantics. On Leibniz's view: 

•O is true if and only if O is true in all possible worlds. 

2 This has given rise to the quip that the optimist is one who, like Leibniz, thinks 
that ours is the best of all possible worlds, whereas the pessimist is one who is sure 
of it. 
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and 

OO is true if and only if O is true in at least one possible world. 

The operators '•' and ' 0 ' are thus akin, respectively, to universal and existential 
quantifiers over a domain of possible worlds. So, for example, to say that it is 
necessary that 2 + 2 = 4 is to say that in all possible worlds 2 + 2 = 4; and to say 
that it is possible for the earth to be destroyed by an asteroid is to say that there is 
at least one possible world (universe) in which an asteroid destroys the earth. 

Generalizing where Leibniz did not, we can extend his analysis to other 
modalities. Deontic operators are like quantifiers over morally possible (i.e., per-
missible) worlds—worlds that are ideal in the sense that within them all the dic-
tates of morality are obeyed (exactly which morality is a question we shall defer!). 
Epistemic operators are like quantifiers over epistemically possible worlds—that 
is, over those worlds compatible with our knowledge (or, more specifically, with 
the knowledge of a given person at a given time). And tense operators act like 
quantifiers too—only they range, not over worlds, but over moments of time. 

Time and possibility: an odd juxtaposition, yet illuminating, for there are 
rich analogies here. For one thing, just as there is a specific temporal moment, the 
present, which is in a sense uniquely real (for the past exists no longer, the future 
not yet), so there is a specific possible world, the actual world, which (for us at 
least) is uniquely real. 

A second point of analogy is that in nonpresent moments objects have differ-
ent properties from those they do now. I, for example, am now seated in front of 
a computer, whereas an hour or two ago I was riding my bike. Not all of what was 
true of me then is true of me now. In the same way, objects have properties different 
from those they actually have in nonactual worlds. I am a philosophy professor, 
but I could have been a farmer; that is, in some possible world I have the property 
of being a farmer, a property I do not actually have. 

And just as an object (or a person) is typically not a momentary phenome-
non, but has temporal duration—is "spread out," so to speak, through time—so 
too is an object "spread out" through possibilities. I am not just what I am at the 
moment; rather, I am an entire life, a yet-uncompleted history, from birth to death. 
Likewise, or so the analogy suggests, I am not merely what I actually am, but also 
my possibilities—what I could have been and could still be.3 

Thus time and possibility share certain structural features, and their respec-
tive logics ought to reflect this fact. In Section 13.2 we shall see that to some extent 
they do. But in the meantime, we have run way ahead of Leibniz's conception of 
alethic modality. To Leibniz we now return, but with an anachronistic twist. We 
shall reformulate his insight about alethic operators in contemporary metatheo-
retic terms. 

To begin, observe that a valuation for predicate logic in effect models a single 
world. It consists of a domain and assignments of appropriate extensions to pred-

3 Cf. Martin Heidegger's contention that Dasein (human existence) is its possibili-
ties and thus is more than it factually is; Being and Time, trans. John Macquarrie 
and Edward Robinson (New York: Harper & Row), pp. 68, 183-84 ,185 . 
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icates and names within that domain. In modal logic, we posit many possible 
worlds. A model for modal logic, then, should contain many "worlds," each with 
its own domain. And because the facts differ from world to world, that model 
should assign to each predicate not just a single extension, but an extension in 
each world. To keep things manageably (but preposterously) simple, consider a 
model representing just three possible worlds, u>x, w2, and w3. And (still oversim-
plifying) let's suppose that wx contains exactly four objects, a, (3, 7, and 8; w2 

contains exactly two objects, 3 and 7; and w3 contains exactly three objects a, 8, 
and 8: 

World Domain 

wx {a, (3, 7, 8} 
0 , 7 } 

w3 {a, 8, e} 

Now suppose we want to interpret the one-place predicate 'B', which for the sake 
of definiteness we may suppose means "is blue." Since a thing may be blue in one 
world but not in another, we cannot assign this predicate a single set (the set of 
blue things), as we would have in predicate logic. Rather, we need to assign it a 
separate set in—or "at" (either preposition may be used)—each world. For each 
world w, the set assigned to 'B' at w then represents the things that are blue in iv. 
Suppose we assign to 'B' the set {a, (3} in w^ { } in w2, and (a, 8, e} in w3. Then, 
according to our model there are two blue things in and none in w2, and in w3 

everything is blue. 
Because extensions differ from world to world (i.e., are world-relative) in 

modal logic, a valuation Y now must take into account not only predicates, but 
also worlds, in assigning extensions. Thus we write 

Y('B', wx) = {a, p} 
Y('B\w2) = { } 
Y('B', w3) = {a, 8, 8} 

to indicate that at world wx the set of things that satisfies the predicate 'B' (i.e., the 
set of blue things) is (a, (3}, and so on. 

Truth, too, is now world-relative. Blue things exist in wx but not in w2; thus 
the formula ought to be true at wx but not at w2. That is, YCBxBx', wx) = 
T, but YCBxBx', ^2) = F. Accordingly, when we assign truth values to sentence 
letters, we shall have to assign each letter a truth value for each world. Let 'M', for 
example, mean "there is motion." We might let 'M' be true in wx but not in w2 or 
w3. Thus Y('M', w,) = T, but Y('M', w2) =T( 'M', w3) = F. 

We shall assume, however, that names do not change denotation from world 
to world. Thus we shall assign to each name a single object, which may inhabit 
the domains of several possible worlds, and this assignment will not be world-
relative. This models the metaphysical idea that people and things are "spread 
out" through possibilities, just as they are "spread out" through time. With respect 
to time, for example, the name 'John Nolt' refers to me now, but also to me when 
I was a child and to the old man whom (I hope) I will become. I occupy many 
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moments, and my name refers to me at each of these moments. Analogously, I 
have many possibilities, and my name refers to me in each. When I consider that I 
could be a farmer, part of what makes this possibility interesting to me is that it is 
my possibility.4 It is I, John Nolt, who could be a farmer; my name, then, refers 
not only to me as I actually am, but to me as I could be. I am a denizen of 
possibilities (that is, possible worlds), as well as times, and my name tracks me 
through these possibilities, just as it does through the moments of my life. 

Names, then, as we shall understand them, are rigid designators; they refer 
to the same object in each world in which they refer to anything at all. The idea 
that names designate rigidly, due to Ruth Marcus and Saul Kripke,5 is now widely, 
though not universally, accepted. Other semantic interpretations of names have 
been offered, but we shall not consider them here. 

In our semantics we shall model rigid designation by representing the value 
assigned to a name a simply as T(a), rather than as T(a, w), which would repre-
sent the value assigned to a at a world w. The omission of the world variable 
indicates that the denotations of names are not world-relative. 

The concept of rigid designation harbors a metaphysical presupposition: the 
doctrine of transworld identity. This is the idea that the same object may exist in 
more than one possible world. It is modeled in our semantics by the fact that we 
allow the same object to occur in the domains of different worlds. Most logicians 
who do possible worlds semantics take transworld identity for granted, though 
there are exceptions.6 

Though a rigidly designating name refers to the same object in different 
worlds, that object need not be "the same" in the sense of having the same prop-
erties. I would have quite different properties in a world in which I was a farmer, 
but I would still be the same person—namely, me. 

These ideas are reflected in the model introduced above. Object (3, for ex-
ample, exists in w1 and w2. It therefore exhibits transworld identity. Moreover, it 
is in the extension of the predicate 'B' in wx, but not in w2. Thus, though it is the 
same object in wx as it is in w2, it is blue in wx but not in w2. If we think of wx as 
the actual world, this models the idea that an object that is actually blue neverthe-
less could be nonblue (it is capable, for example, of being dyed or painted a 
different color, yet retaining its identity). 

Suppose now that we use the name 'n' to denote object (3, that is, let V('n') = 
p. (Note the absence of a world-variable here; the denotation of a rigidly designat-

* Of course not all possibilities are my possibilities. In a world in which my parents 
had never met, I would never have existed, and the name 'John Nolt' would not 
refer to anything in that world (unless, of course, there were a different person 
with that name—but then the name would simply be ambiguous; that person 
would not be me). My existence, in other words, is contingent. In our models, this 
contingency is represented by the fact that an object need not occur in the domain 
of each world. 

5 See Kripke's Naming and Necessity (Cambridge: Harvard University Press, 1972). 
6 Most notably David Lewis, in "Counterpart Theory and Quantified Modal 

Logic," Journal of Philosophy 65 (1968): 113-26. 



3 1 4 CHAPTER 11 

ing name, unlike truth or the denotation of a predicate, is not world-relative.) 
Then we would say that the statement 'Bn' ("n is blue") is true in wu but not in 
w2, that is, Y('Bn', wx) = T, but YfBn' , w2) = F. 

But what are we to say about the truth value of 'Bn' in w3, wherein 3 does 
not exist? Consider some possible (but nonactual) stone. Is it blue or not blue in 
the actual world? Both answers are arbitrary. Similarly, it seems arbitrary to make 
'Bn' either true or false in a world in which 'n' has no referent. 

This problem cannot be satisfactorily resolved without either abandoning 
bivalence (so that 'Bn', for example, may be neither true nor false) or modifying 
the logic of the quantifiers. The first approach is perhaps best implemented by 
means of supervaluations, which are discussed in Section 15.3; the second by free 
logics, which are covered in Section 15.1. Discussion of either method now would 
perhaps complicate things beyond what we could bear at the moment. We shall 
therefore leave the question unsettled. 

Valuation rules 1 and 2 below give truth conditions for atomic formulas at a 
world only on the condition that the extensions of the names contained in those 
formulas are in the domain of that world. The truth conditions at w for atomic 
formulas (other than identities) that contain names which denote no existing thing 
at w are left unspecified. (Identity statements are an exception, since their truth 
conditions are not world-relative.) Our semantics, then, will be deficient in this 
respect, though still usable in other respects. The deficiency will be remedied in 
Chapter 15. 

A valuation, or model, then, consists of a set of things called worlds, each 
with its own domain of objects. In addition, it assigns to each name an object from 
at least one of those domains, and it assigns to each predicate and world an 
appropriate extension for that predicate in that world. An object may belong to 
the domain of more than one world, but it need not belong to domains of all 
worlds. Two different worlds may have the same domain. The full definition is as 
follows: 

DEFINITION A Leibnizian valuation or Leibnizian model Y for a formula 
or set of formulas of modal predicate logic consists of the following: 

1. A nonempty set <wv of objects, called the worlds of Y. 
2. For each world w in <wv a nonempty set !bw of objects, called the 

domain of w. 
3. For each name or nonidentity predicate cr of that formula or set of 

formulas, an extension Y(cr) (if cr is a name) or Y(cr, u>) (if cr is a 
predicate and w a world in <Wr) as follows: 

i. If a is a name, then Y(cr) is a member of the domain of at least 
one world. 

ii. If a is a zero-place predicate (sentence letter), Y(cr, w) is one 
(but not both) of the values T or F. 
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iii. If <x is a one-place predicate, Y (cr, w) is a set of members of 2>w. 
iv. If or is an n-place predicate (n > 1), Y(cr, w) is a set of ordered n-

tuples of members of 

Given any valuation, the following valuation rules describe how truth and falsity 
are assigned to complex formulas: 

Valuation Rules for Leibnizian Modal Predicate Logic 

Given any Leibnizian valuation Y, for any world w in 
1. If is a one-place predicate and a is a name whose extension Y(a) is in 

then 
Y(Oa, w) = T iff Y(a) e Y(<D, w); 
Y(Oa, w) = ¥ iffT(a) t Y(3>, w). 

2. If <D is an «-place predicate (n > 1) and a l5 . . . , a„ are names whose 
extensions are all in then 

y(Qa u . . . , a„, w) = T iff <T(a1), . . . , T(a„)> e Y(<D, w); 
T(Oa1 , . . . , a„, w) = F iff < Y ( a i ) , . . . , Y ( a j > t Y(0>, w). 

3. If a and (3 are names, then 
r(a = 0, w) = T iff Y(a) = r O ) ; 
Y(a = 0, w) = FiffY(a)*Y((3). 

For the next five rules, <E> and ¥ are any formulas: 
4. Y(~0, w) = T iff Y(4>, w) * T; 

Y(~0, w) = ¥ iff Y(0 , w) = T. 
5. Y(<X> & w) = T iff both T(<E>, w) = T and T(VF, w) = T; 

Y(<D & w) = F iff either Y(0 , w) * T or Y w) * T, or both. 
6. Y(<D v w) = T iff either Y(<£>, w) = T or Y ( ¥ , «/) = T, or both; 

T(O v «;) = F iff both Y(O, w) * T and Y(*F, «/) * T. 
7. Y (O — «/) = T iff either Y(3>,«/) * T or Y(*F, M/) = T, or both; 

Y ( 0 — «/) = F iff both Y(<D,to) = T and Y(*F, w) * T. 
8. T(<E> — w) = T iff either Y(<£, «/) = T and Y w) = T, or Y(0 , w) * 

Tand T(XF, w)*T ; 
Y(d> «-> % m/) = F iff either w) = T and Y ( % w) * T, or Y(0 , w/) * 
T a n d y OF, w) = T. 

For the next two rules, stands for the result of replacing each occur-
rence of the variable |3 in <E> by a, and is the domain that Y assigns to 
world w. 

9. Y(VP3>, w) - T iff for all potential names a of all objects J in 

Y(VpO, w) = F iff for some potential name a of some object J in !blt„ 
Y ( a j , (0%,«/)*T. 

10. Y(3p<£>, w) = T iff for some potential name a of some object d in '2>u„ 
= T; 

Y(3pO, w) = F iff for all potential names a of all objects J in 
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11. y(o<D, w) = T iff for all worlds u in T ( 0 , u) = T; 
Y(n<E>, w) = F iff for some world u in T ( 0 , u) * T. 

12. T( 0 0>, u/) = T iff for some world « in u) = T; 
T ( 0 0 , w) = F iff for all worlds u in <Wy, T ( 0 , u) * T. 

Since the valuation rules are a lot to swallow in one bite, we'll take the proposi-
tional fragment of the semantics by itself first and come back to the full modal 
predicate logic later. This simplifies the definition of a valuation considerably: 

DEFINITION A Leibnizian valuation or Leibnizian model T for a formula 
or set of formulas of modal propositional logic consists of 

1. A nonempty set <i/Vy of objects, called the worlds of T . 
2. For each sentence letter cr of that formula or set of formulas and 

each world w in <wr, an extension T(ct, w) consisting of one (but 
not both) of the values T or F. 

Here worlds are like the (horizontal) lines on a truth table, in that each is distin-
guished by a truth-value assignment to atomic formulas—though not all lines of a 
truth table need be represented in a single model. 

Consider, for example, the following valuation of the formula '(V v W)' 
which we may suppose means "Sam is virtuous or Sam is wicked": 

%- = { ! , 2, 3, 4} 
Y('V', 1) = T T('W', 1) = F 
Y('V', 2) = F T( 'W',2) = F 
r ( ' V ' , 3 ) = F T( 'W' ,3) = T 
r ( ' V ' , 4 ) - F y( 'W' ,4) = T 

The "worlds" here are the numbers 1, 2, 3, and 4. (In a model, it doesn't matter 
what sorts of objects do the modeling.) In world 1, 'V' is true and 'W' is false— 
that is, Sam is virtuous, not wicked. In world 2, Sam is neither virtuous nor wicked. 
And in worlds 3 and 4, Sam is wicked, not virtuous.7 Our model represents the 
situation in which Sam is both virtuous and wicked as impossible, since this situ-
ation occurs in none of the four possible worlds. In other words, only three of the 
four lines of the truth table for 'V v W' are regarded as possible. This is arguably 
appropriate, given the meanings we have attached to 'V' and 'W\ 

7 In a sense, world 4 is redundant, since from the point of view of our model it 
differs in no way from world 3. But this sort of redundancy is both permissible 
and realistic. It may, for example, represent the idea that world 4 differs from 
world 3 in ways not relevant to the problem at hand; for example, Sam may be a 
sailor in world 3 but not in world 4. Of course, if the model were truly realistic, it 
would contain many more worlds representing many such irrelevant differences, 
but we are simplifying. 
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To understand more about how this model works, we must consider the 
valuation rules for propositional modal logic (rules 4 - 8 and 11-12 above). Ac-
cording to rule 6, for example, the statement 'V v W' has the value T in a w orld w 
if and only if either 'V' or 'W' has the value T in that world, and it is false 
otherwise. Thus this statement is true in worlds 1, 3, and 4, but false in world 2. 
The rules for the other truth-functional propositional operators ('- ' , '—»•', and 
'<->•') are all similarly relativized to worlds. 

The real novelty, though, and the heart of Leibniz's insight, lies in rules 11 
and 12. Consider, for example, the statement 'n~(V Sc W)', which according to 
our interpretation means "it is necessarily the case that Sam is not both virtuous 
and wicked." According to rule 11, this formula is true at a given world w if and 
only if the statement '~(V 8c W)' is true in all worlds. Now in our model '~(V &c 
W)' is in fact true in all worlds. For there is no world in which both CV' and ' 
are true; hence by rule 5, 'V & W' is not true in any world, and so by rule 4, '~(V 
&C W)' is true in each world. This means by rule 11 that 'n~(V & W)' is true in 
every world. 

Similarly, the statement 'OY' ("it is possible that Sam is virtuous") is true 
in all worlds. For consider any given world w. Whichever world w is, (.here is 
some world u (namely, world 1) in which 'V' is true. Hence by rule 12, £ 0 V ' is 
true in iv. 

Notice also that since ' 0 Y' is true in all w orlds, it follows by another appli-
cation of rule 11 that '•<> V ("it is necessarily possible that Sam is virtuous") is 
true in all worlds. In fact, repeated application of rule 11 establishes that '••<> V', 
'•••OV', and so on are all true at all worlds in this model. The following meta-
theorem exemplifies the formal use of medal semantics; use it as a model for 
Exercise 11.2.1: 

METATHEORBM: For any world w of the model just described, 
Y('CIOV\K>)«X 
PROOF; Ler u be any world of this model, that is, u e <Wr, Since 1- (eY\ 
1) = 7, it follows by rule 12 that V(* <> V', u) - X Thus, for all n in <wr, 
V( ' 0 V , u) ~ T. Now let iv be any world in <wv It follows by rule 11 
that V('D<> u>) ^ T. QFJ) 

Exercise 11.2.1 

Consider the following model: 

<^ = {1 ,2 ,3} 
T (T ' , 1 ) = T T('Q', 1) = F 
T('P', 2) = F T('Q', 2) = F 
T('P', 3) = T T( 'Q' ,3) = T 

T('R', 1) = T 
T( 'R ' ,2 ) = T 
T( 'R' , 3) = T 
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Using the valuation rules, prove the following with respect to this model: 

1. T('P v Q', 1) = T 
2. T('nR', 1) = T 
3. For any world w in Wy, Y('nR', w)~ T 
4. There is no world w in such that T('oP', w) = T 
5. For any world w in avv, Y( ' 0 P', w) = T 
6. For any world w in <wr, Y('~nR', W) = F 
7. For any world w in <wr, Y(' 0 ~R', w) = F 
8. For any world w in 04V, Y('P v ~P', w) = T 
9. For any world w in Y('n(P v ~P)', w) = T 

10. For any world w in o<iy, Y('~ 0 (P & ~P)', w) = T 

Our semantics is democratic: It treats all possible worlds as equals; none is 
singled out as uniquely actual. This models another prominent idea in modal 
metaphysics: the thesis of the indexicality of actuality. According to this doctrine, 
no world is actual in an absolute sense; each is actual from a perspective within 
that world but not from any perspective external to it. For those whose perspective 
(consciousness?) is rooted in other possible worlds, our world is merely possible, 
just as their worlds are merely possible for us. Actuality, then, is indexed to worlds 
(world-relative) in just the way truth is. 

The thesis of the indexicality of actuality is much disputed. Logicians who 
think that actuality is not indexical may incorporate this idea into their semantics 
by designating exactly one world of each model as actual. But this bifurcates their 
concept of truth. They have, on the one hand, a notion of nonrelative or actual 
truth—that is, truth in the actual world—and, on the other, the same relative 
notion of truth (truth-in-a-world) that we use in defining possibility and necessity. 
I use the indexical conception of actuality here because it requires only one sort of 
truth (world-relative) and hence yields a simpler semantics. 

Those who find the indexicality of actuality dizzying may appreciate the 
following analogy. Imagine you are a transcendent God, perusing the actual uni-
verse from creation to apocalypse. As you contemplate this grand spectacle, ask 
yourself: Which moment is the present? 

In your omniscience you should see at once that this question is nonsensical. 
There is a present moment only for creatures situated within time, not for a God 
who stands beyond it. The present moment for me at noon on my third birthday 
is different from the present moment for me as I write these words, which is 
different from the present moment for you as you read this. None of these is the 
present moment, for there is no absolute present.8 Presentness is indexed to mo-
ments of time—that is, relative to temporal position. If I have lived or will live at 
a given moment, then that moment is present to the temporal part of me that 
intersects it but not present to other temporal parts of me. 

8 This is not idle speculation; the thesis that there is no absolute present is central to 
Einsteinian relativity theory, which is the source of the best understanding of time 
available at the moment. 
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Analogously, according to the understanding that grounds our semantics, 
there is an actual world only for creatures situated within worlds, not for a 
God—or a modal semanticist—standing beyond them. A world in which I become 
a farmer is just as actual for that farmer (i.e., for that possible "part" of me) as the 
world I am currently experiencing is for the professorial portion of me that inhab-
its it. Neither of these, nor any other, is the actual world in some absolute sense, 
because actuality is always relative to a perspective within some possible world.9 

That, at any rate, is one way of understanding the "democratic" semantics 
presented here: Models do not single out an actual world, because our model 
theory operates from a perspective beyond worlds from which no world is 
uniquely actual. 

Having relativized truth to worlds, we must make compensatory adjust-
ments in those metatheoretic concepts that are defined in terms of truth. Consis-
tency, for example, is no longer merely truth on some valuation (model), for 
formulas are no longer simply true or false on a valuation; they are true or false at 
a world on a valuation. Thus we must revise our definitions of metatheoretic 
concepts as follows: 

DEFINITION A formula is valid iff it is true in all worlds on all of its 
valuations. 

DEFINITION A formula is consistent iff it is true in at least one world on 
at least one valuation. 

DEFINITION A formula is inconsistent iff it is not true in any world on any 
of its valuations. 

DEFINITION A formula is contingent iff there is a valuation on which it is 
true in some world and a valuation on which it is not true in some world. 

DEFINITION A set of formulas is consistent iff there is at least one valua-
tion containing a world in which all the formulas in the set are true. 

DEFINITION A set of formulas is inconsistent iff there is no valuation con-
taining a world in which all the formulas in the set are true. 

DEFINITION Two formulas are equivalent iff they have the same truth 
value at every world on every valuation of both. 

DEFINITION A counterexample to a sequent is a valuation containing a 
world at which its premises are true and its conclusion is false. 

9 Here we contradict Leibniz, who thought that actuality was something absolute— 
namely, whatever it was that God added to our possible world in order to create it 
(ours was, according to Leibniz, the only world God created). For a fuller discus-
sion of the indexicality of actuality, see David Lewis, On the Plurality of Worlds 
(Oxford: Basil Blackwell, 1986), sec. 1.9, pp. 92-96 . 
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DEFIN. riO \T A sequent is valid iff there is no world in any valuation on 
which its premises are true and its conclusion is not true. 

DEFINITION A sequent is invalid iff there is at least one valuation contain-
ing a world at which its premises are true and its conclusion is not true. 

Using these concepts, we now embark upon a metatheoretic exploration of 
Leibnizian modal semantics. Our first metatheorem confirms the truism that what 
is necessary is the case. 

METAT7IEOK EM: Any sequent of the h >rm m> h $ is valid. 

PROOF: Suppose for reductio that some sequent of this form is not 
valid—that is, that there rs some formula some \alua-
tion V, and some world w of Y such that V{n<3>, w) = T but 

w) t T. Since Y(Q$», w) - T, it follows by valuation 
rule 11 rhar u) = T for all worlds u in <X-. Hence in 
particular 1 '(<!>, w) = T, which contradicts out supposition that 
T(<I> , w ) * T . 

Thus we have shown thst any sequent of the form txt> I- <I> is 
valid. QEP 

I 

The converse, of course, does not hold. What is need not be necessary. The Earth 
is populated; but this is not necessarily the case. (It might cease to be the case 
through any of a variety of catastrophic events, and indeed it might never have 
happened at all.) To vivify the next metatheorem, think of T ' as meaning "the 
Earth is populated." and think of world 1 as the actual world and world 2 as a 
world in which the Earth is barren. 

METATHEOREM: The sequent 'P h dp' is invalid. 

PR( 'Of: Considei the valuation Y whose set of worlds is {J, 2} such 
that 

Y('P\ 1) = T 
V(T\ 2) = F 

Now since 1 (T\ 2) r- T, there is some world u m <T*V (namely, world 2) 
such that T{'P\ u) # T. Hence by rule 1I, Y('dP', 1} T. Therefore we 
have both T('P\ !) = T and YfOP\ 1) ?=T, which constitutes a counter-
example. Thus the sequent is invalid QED 

On Leibnizian semantics what is necessary at one world is necessary at all; 
therefore, what is necessary is necessarily necessary. This is because necessity itself 
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is truth in ail worlds, and if something is true in all worlds, then it is true in all 
worlds that it is true in all worlds. The following metatheorem gives the details: 

METATHEOREM: Any sequent of the form c*P h is valid. 

PROOt: Suppose for reductio that >ome sequent of this form is not 
valid—that is, that there is some formula some valua-
tion Y, and some world w of Y such that Y(n<I\ w)- T but 
y(Dd<b, w) * T. Since w) * T, it follows by valuation 
rule 11 that Y(Q<t>, u) * T for some world u in But then 
again by rule I t , for some world x in Y(<i>. x) ^ T. 
However, since T W , w) = T, by rule 11, Y(4>, y) = T for all 
worlds y in (in particular for world x); and so we have a 
contradiction. 

Consequently, contrary to our supposition, any sequent of the form CKJ> 
(- is valid. QED _ ( 

World variables {'w\ V , V , and cy\ for example, in the previous metatheo-
rem) are a pervasive feature of modal metalogic. Each such variable should be 
introduced with a metalinguistic quantifier to indicate whether it stand-, for all 
worlds or just some. Variables standing for a particular world may be re seated 
later in the proof if there is need to refer to that world again. Early in the previous 
metatheorem, for example,'w' is introduced (via existential quantification: "there 
is a valuation Y containing a world w") to stand for a particular world; later it is 
employed several times to refer to that same world, " o avoid ambiguity, it is best 
to choose a typographically new variable for each quantification. Thus, for exam-
ple, in the same proof, 'y' use<^ t o make a universally quantified statement, and 
V and <x1 to make separate existentially quantified statements. 

Cur next metatheorem proves one of the two biconditionals expressing the 
idea that and e 0 ' are duals. (The other is left as an exercise below.) In some 
systems one of these two operators is taken as primitive and the other is defined in 
terms of it using one of these biconditionals. 

METATHEOREM: Any formula of the form 00+-* ~0~<£> is valid. 

PROOF: Suppose for reductio that some formula of tins form is not 
valid. That is, for some formula <I> there exists a valuation T 
and world iv o f Y such that Y( 0<2> w) # T. It follows 
by valuation rule 8 that either V( 0&, u>) = T anu Y (~CMD, w) 
* T or Y( OO, w) * T and Y{~n~4>, u>) = T. We show thar either 
case leads to contradiction. 

Suppose, first, that Y{ 00, w) - T and % (~d~<1>, w) * !. 
Since Y( 00>, w) = T, by rule 12, Y(<I\ u) = T for some 
world if in Hence by rule 4 there is some world u in 
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iv? at which u) * T. So by rule 11, Y ( M > , w) * T. 
But we had as&unied that Y(~o~<3>, w) ^ T, whence it 
follows by rule 4 tliat Y{o~#, w) ~ f; and so we have a 
contradiction. 

Hence it is not the case that both T( OO, w ) ~ l and V{~Q~<&, 

Suppose now that T{ OO, w) # T and Y(~o~4>, w) =? X 
Since TfO®, w) * T, by rule 12, u) * T for all 
worlds u m 1 lence by rule 4 for all worlds u in 

u) » T. So by rule 11, w) = T. But we had 
assumed that T(~CME>, w) ~ T, whence it foiledws by rule 
4 that Y(0~-4>, w) * T; and so we have a contradiction. 

Therefore it is not the case that both Y{0<£, w) * T and 
T{~o~<f>, w) = T. Thus, since, as we saw above, it is also 
not the case that both Y{ 00, w) = T and Y(~O~<JJ, w) * T, 
then contrary to what we had concluded above, 

Thus we have shown that everv formula of the form DO ~0~4> is 
valid. QED 

One of the most important consequences of the doctrine that names are rigid 
designators is the thesis expressed in the next metatheorem: the neccessity of iden-
tity. Kripke, who popularized this thesis in its contemporary form,10 illustrates it 
with the following example. 'Phosphorus' is a Latin name for the morning star; 
'Hesperus' is the corresponding name for the evening star. But the morning star 
and the evening star are in fact the same object, the planet we now call Venus. 
1 lence the statement 

Hesperus = Phosphorus 

is true. Now if names are rigid designators, then since this statement î  true, the 
object designated by the name 'Hesperus' in the actual world is the very same 
object designated by 'Hesperus' in any other world, and the object designated by 
the name 'Phosphorus' in the actual world is the same as the object designated by 
that name in any other world. Thus in every w orld both names designate the same 
object they designate in the actual world: the :)lanet Venus. So 'Hesperus = Phos-
phorus' is not only true in the actual world but necessarily true. 

Yet this conclusion is disturbing. So far as the ancients knew, T lesperus and 
Phosphorus could have been separate bodies; it would seem, then, that it is not 
necessary that Hesperus = Phosphorus. 

But this reasoning is fallacious. The sense in which it was possible that i Tes-
perus was not Phosphorus is the epistemic sense; it as possible so far as the 

10 Naming and Necessity (Cambridge: Harvard University Press, 1972). 
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ancients knew—that is, compatible with their knowledge—that Hesperus was not 
Phosphorus. It was not genuinely (i.e., alethically) possible. The planet Venus is 
necessarily itself; that is, it is itself in any possible world in which it occurs. And if 
names are rigid designators, then the names 'Hesperus' and '"hosphorus5 both 
denote Venus in every world in which Venus exists. Hence, given the dual doctrines 
of transworld identity and rigid designation (both of which are incorporated in 
our semantics), it is alethically necessary that Hesperus is Phosphorus, despite the 
fact that it is not epistemically necessary. Keep this example in mind while consid-
ering the metatheorem below. 

AIETATHFOREM: Every sequent of the form a «{3 b Sex = (3 is \ alid. 

PROOF; Suppose for reductio that some sequent of tins form is not 
valid. Then for some names n and £ there is a valuation T and 
world w o f T such that V(a = (3, w) = T and %'{Oa = p. w ) * T. 
Since V(n« = {3. w) & T by rule 11 there is some world u in i Wr 

such that T(a = (3, u) * f. Hence by rule 3, T(«) * T(p). But 
then again by rule 3, T(a - w) T, which contradicts what 
we had said above. 

Thus, contiary to our supposition, evetv sequent of the form a - B t-
•a = fd is valid. QED 

Modal operators interact with the quantifiers of predicate logic in logic-
ally interesting ways. The last two metatheorems of this section illustrate this 
interaction. 

METATHEOREM: The sequent 43xFx i- 3xOF*' is valid. 

PROOF: Suppose for reductio that 'BxEx 3x0 Fx' is not valid. Then 
there ts some valuation If and world w of V such that 
T(<3*Fx, w) = T and y('3xOFx', w) * T. Since Y(3xl:x\ u>) = 
rL it follows by rule 10 that for some potential name a of some 
object A m RI>U3 Y^(Fec, W) = T. So for sume world U (namely 
w) in 1"(M(fa> u) = T. But then by rule 12, V<M(OFa, w) -
T. I fence, since ^ is in by nile 10, °l ("3x0 fx\ w) - T, 
contrary to what we had supposed above. 

Thus we have established that £3xi x I- 3x0Fx' is valid. QED 

i'he sequent says tha'; given that something is F, it follows that something 
(that very same thing, if nothing else) is possibly F. This is a consequence of the 
fact that the actual world, which we may think of as w— and also u—in the proof 
is also a possible world, so that whatever actually has a property aL>o possibly has 
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it. In the proof, the object which actually has the property F is object d. Since d has 
F in w, d has F in some possible world, i.e., possibly has F. It follows, then, that 
something possibly has F. This enables us to contradict the reductio hypothesis. 

Our final metatheorem shows that from the fact that it is possible some-
thing is F, it does not follow that the world contains anything which itself is 
possibly F. Suppose, for example, that we admit that it is (alethically) possible 
that there are such things as fairies. (That is, there is a possible world containing 
fairies.) From that it does not follow that there is in the actual world anything 
which itself is possibly a fairy. The counterexample presented in the following 
metatheorem is a formal counterpart of this idea. Think of world 1 as the ac-
tual world, which (we assume) contains no fairies and world 2 as a world in 
which fairies exist. (The fairies are objects 8 and 8.) Read the predicate 'F' as "is 
a fairy." 

METATHEOREM: The sequent '03xF* 3 x 0 Fx is invalid. 

PROOF: Consider the following valuation Y whose &et <Vr of worlds is 
{1,2}: 

World Domain 

1 K & A') 
I {a, p, x, B,e) 

where 

1} - { } r{<F\2) = { M } 

Now Y{*'03xFx', j ) - T. For —that is, o - -is in the domain of 
world 2 and Y(Vi8) e 2} so that by rule 1, Y ^ ^ W 2) = T. 
Thus by rule 10> Tf3xFx\ 2) = 'i And from this it follows b> rule 12 
thatY(e03xFx\ 1) = T. 

However, Y(3x0¥x% 1) ^ T, for there is no member o> of the 
domain of world I which is in the extension of the predicate 'F* in any 
world. Hence by rule i there is no world ti in name v and object o> 
in rhe domain of w orld 1 such that u) - T. Thar- bv mle 12 
r':.ere is no name v and objec t uu in the domain o f world 1 such that 
Y { V J0Fv> 1 )«T . So by rule iC, r ( S x O F * ' , 1) * T 

Thus, since V(*0a*F*% 1)~ I but r( '3*0Fx\ 1) * T, we have a 
counterexample and the sequent is invalid QED 

Notice that in the proof of this theorem we avoided the ques.ion of predication 
for nonexisting objects (which we have left unsettle./). In this case it is the ques-
tion whether the objects 8 and which are fairies in world 2, are nlso fairies in 
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world 1, where they do not exist. Our valuation rules do not answer this question, 
but the sequent 'OBxFx b 3xOFx' is invalid regardless of how it is answered. 

Exercise 11.2.2 

Prove the following raetatheorems using Leibnizian semantics for modal predicate 
logic: 

1. The sequent 'P I- OP' is valid. 
2. The sequent' OP b P' is invalid. 
3. The sequent' 0(P & Q) b OP &c OQ' is valid. 
4. The sequent' OP & OQ b 0(P & Q)' is invalid. 
5. Every sequent of the form O b nOO is valid. 
6. Every sequent of the form OnO b is valid. 
7. For any formula O, if O is a valid formula, then so is nO. 
8. Every formula of the form •<£> ~0~0 is valid. 
9. Every sequent of the form •<£ b 0<3> is valid. 

10. Every sequent of the form •(<£ —* *F) b (aO —> is valid. 
11. Every sequent of the form •(<£ —» b ~0(<£> &c is valid. 
12. Every sequent of the form - 0 ( 0 & ~x¥) b •(<!> —•• W) is valid. 
13. The sequent 'nP, P—Q b DQ' is invalid. 
14. Every formula of the form not = a is valid. 
15. Every sequent of the form ~a = (3 b Q~a = (3 is valid. 
16. Every sequent of the form Oa = (3 b a = (3 is valid. 
17. The sequent 'VxQFx b •VxF.x' is invalid. 
18. Every sequent of the form V(3«l> b V(30 is valid. 

11.3 A NATURAL MODEL? 

Our model theory (semantics) deepens our understanding of the alethic modal 
operators, though to get interesting results we have had to make a metaphysical 
assumption or two along the way. Still we have not learned much about possibility 
per se. The models we have so far considered are all wildly unrealistic—because 
they contain too few worlds; because these "worlds" are not really worlds at all, 
but numbers; because their domains are too small; and because we never really 
said what the objects in the domains were. In this section we seek a more realistic 
understanding of possibility by correcting these oversimplifications. 

In Section 7.2 we noted that, although most of the models we encounter even 
in predicate logic are likewise unrealistic (being composed of numbers with artifi-
cially constructed properties and relations) we can, by giving appropriate mean-
ings to predicates and names, produce a natural model. A natural model is a model 
whose domain consists of the very objects we mean to talk about and whose 
predicates and names denote exactly the objects of which they are true on their 
intended meanings. A natural model for geometry, for example, might have a 
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domain of points, lines, and planes. A natural model for subatomic physics might 
have a domain of particles and fields.11 

A natural model for modal discourse will consist of a set of possible worlds— 
genuine worlds, not numbers—each with its own domain of possible objects. And 
that set of worlds will be infinite, since there is no end to possibilities. 

But what is a possible world? 
Leibniz thought of possible worlds as universes, more or less like our own. 

But how much like our own? Can a universe contain just one object? There is no 
obvious reason why not. Can it contain infinitely many? It seems so; in fact, for 
the century or two preceding Einstein, many astronomers thought that the actual 
universe really did. We have already said that there is a possible world in which I 
am a farmer. Is there one in which I am a tree? 

This is a question concerning my essence, that set of properties which a thing 
must have in order to be me. What belongs to my essence? Being a professor is 
pretty clearly not essential to me. What about being (biologically) human? There 
are fairy tales in which people are turned into trees and survive. Do these tales 
express genuine possibilities? Such questions have no easy answers. Perhaps they 
have no answers at all. 

Philosophers who think that the nature of things determines the answers are 
realists about essence. Realists believe that essences independent of human thought 
and language exist "out there" awaiting discovery. (Whether or not we can dis-
cover them is another matter.) Opposed to the realists are nominalists, who think 
that essences—if talk about such things is even intelligible—are not discovered, 
but created by linguistic practices. Where linguistic practices draw no sharp lines, 
there are no sharp lines; so if we say increasingly outrageous things about me (I 
am a farmer, I am a woman, I am a horse, I am a tree, I am a prime number . . .), 
there may be no definite point at which our talk no longer expresses possibilities. 
For nominalists, then, it is not to be expected that all questions about possibility 
have definite answers. (Extreme nominalists deny that talk about possibility is even 
intelligible.) The realist-nominalist debate has been going on since the Middle 
Ages; and, though lately the nominalists have seemed to have the edge, the issue is 
not likely to be settled soon. 

To avoid an impasse at this point, we shall invoke a distinction that enables 
us to sidestep the problem of essence. Whether or not it is metaphysically possible 
(i.e., possible with respect to considerations of essence) for me to be a tree, it does 
seem logically possible (i.e., possible in the sense that the idea itself—in this case 
the idea of my being a tree—embodies no contradiction). Contradiction is perhaps 
a clearer notion than essence; so let us at least begin by thinking of our natural 
model as modeling logical, not metaphysical, possibility. 

In confining ourselves to logical possibility, we attempt to think of objects as 
essenceless. What sorts of worlds are possible now? It would seem that a possible 

11 These would be models for theories expressed in predicate logic, not necessarily 
in modal logic. 
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world could consist of any set of objects possessing any combination of properties 
and relations whatsoever. 

But new issues arise. Some properties or relations are mutually contradictory. 
It is a kind of contradiction, for example, to think of a thing as both red and 
colorless. Similarly, it seems to be a contradiction to think of one thing as being 
larger than a second while the second is also larger than the first. But these con-
tradictions are dependent upon the meanings of certain predicates: 'is red' and 
'is colorless' in the first example; 'is larger than' in the second. They do not 
count as contradictions in predicate logic, which ignores these meanings (see Sec-
tion 9.4). 

If we count them as genuine contradictions, then we must deny, for example, 
that there are logically possible worlds containing objects that are both red and 
colorless. If we refuse to count them as genuine contradictions, then we must 
condone such worlds. In the former case, our notion of logical possibility will be 
the informal concept introduced in Chapter 1. In the latter, we shall say that we 
are concerned with purely formal logical possibility. 

Only if we accept the purely formal notion of logical possibility will we 
count as a logically possible world any set of objects with any assignment what-
soever of extensions to predicates. If we accept the informal notion, we shall 
be more judicious—rejecting valuations which assign informally contradictory 
properties or relations to things. We shall still face tough questions, however, 
about what counts as contradictory. Can a thing be both a tree and identical 
to me? That is, are the predicates 'is a tree' and 'is identical to John Nolt' con-
tradictory? The problem of essence, in a new guise, looms once again. Only by 
insisting upon the purely formal notion of logical possibility can we evade it 
altogether. 

In the next chapter the lovely simplicity of Leibnizian semantics will be shat-
tered, so we might as well allow ourselves a brief moment of logical purity now. 
Let's adopt, then, at least for the remainder of this section, the formal notion of 
logical possibility. 

Now, take any set of sentences you like and formalize them in modal predi-
cate logic. The natural model for these sentences is an infinite array of worlds. Any 
set whatsoever of actual and/or merely possible objects is a domain for some world 
in this array. The predicates of the formalization are assigned extensions in each 
such set in all possible combinations (so that each domain is the domain of many 
worlds). Among these domains is one consisting of all the objects that actually 
exist and nothing more. And among the various assignments of extensions to 
predicates in this domain is one which assigns to them the extensions they actually 
do have. This assignment on this domain corresponds to the actual world. (Other 
assignments over the same domain correspond to worlds consisting of the same 
objects as the actual world does, but differing in the properties those objects have 
or the ways they are interrelated.) If our discourse contains any names, on the 
intended interpretation these names name whatever objects they name in the ac-
tual world; but they track their objects (i.e., continue to name them) through all 
the possibilities in which they occur. 
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11.4 INFERENCE IN LEIBNIZIAN LOGIC 

Leibnizian propositional logic retains all the inference rules of classical proposi-
tional logic but adds new rules to handle the modal operators. Though we shall 
examine inferences involving identity, we shall not deal with quantifiers in this 
section, since the quantifier rules depend on how we resolve the question of pred-
ication for nonexisting objects. One reasonable way of resolving this question is 
to adopt a free logic—that is, a logic free of the presupposition that every name 
always names some existing thing. We shall consider free logics in Section 15.1, 
and we defer the treatment of modal inferences involving quantification to that 
section. 

The nonquantificational Leibnizian logic that we will explore in this section 
adds to the rules of classical propositional logic and the classical rules for identity 
seven new inference rules (the names of most are traditional and of various 
origins): 

Duality (DUAL) From either of OO and infer the other; from either 
of •<£> and ~0~<J>, infer the other. 

K rule (K) From o(0 — infer (•<& — •¥). 

T rule (T) From •<£, infer <1>. 

S4rule(S4) From DO, infer ••<£. 

Brouwer rule (B) From O, infer nOO. 

Necessitation (N) If <E> has previously been proved as a theorem, then any 
formula of the form may be introduced at any line of a proof. 

Necessity of identity (•=) From a = (3, infer Da = [3. 

It is not difficult to show that every instance of each of these rules is valid on a 
Leibnizian semantics—and indeed we did this for some of them in Section 11.2 
(the rest were left as exercises). 

The necessitation rule differs from the others in that it uses no premises but 
refers, rather, to theorems established by previous proofs. A theorem is a valid 
formula, a formula true in all worlds on all valuations. Therefore, if <3> is a theo-
rem, •€> and any formula of the form may be asserted anywhere in a proof 
without further assumptions. When we use the rule of necessitation, we annotate 
it by writing its abbreviation 'N' to the right of the introduced formula, followed 
by the previously proved theorem or axiom schema employed. 

These seven inference rules, together with the rules of classical propositional 
logic and the identity rules =1 and =E, constitute a system of inference that is sound 
and complete with respect to a Leibnizian semantics for the modal propositional 
logic with identity—but to show this is beyond our scope. The purely proposi-
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tional rules (i.e., the ones other than =1, =E, and •=) comprise a logic known as 
S5.12 This section is largely an exploration of the valid inferential patterns of S5. 

We begin by proving the sequent 'P (- OP': 

•~P H (for ~I) 
~P 2 T 

1. P A 
2. 
3. 
4. P & ~P 1,3 &I 
5. ~n~P 2 - 4 ~I 
6. OP 5 DUAL 

The strategy is an indirect proof. Recognizing initially that' 0 P' is interchangeable 
with '~n~P', we hypothesize 'n~P' for reductio. Using the T rule, the contradiction 
is obtained almost immediately. This yields '~n~P', which is converted into 'OP' 
by DUAL at line 6. 

The rules N and K are often used together to obtain modalized versions of 
various theorems and rules. The sequent 'm(P &c Q) h nP', for example, which is a 
modalized version of &E, is proved by using N and then K: 

1. n ( P & Q ) A 
2. n((P & Q) —• P) N ((P & Q) P)13 

3. n ( P & Q ) —DP 2 K 
4. DP 1, 3 —>E 

A similar but more sophisticated strategy utilizing N and K yields sequents 
involving possibility. Our next example is a proof of ' 0 P h 0 (P v Q)', a modalized 
version of vl. Here we apply N to the theorem '~(P v Q ) - > ~P', the contrapositive 
of 'P —• (P v Q)', which in effect expresses vl. (This strategy of applying N to 
contraposed nonmodal versions of the modal sequent we want to prove is typical 
when the modality involved is possibility.) 

1. OP A 
2. •(~(PvQ) — ~P) N (~(P v Q) — ~P)14 

3. a~(P v Q) —* d~P 2 K 
4. ~n~P 1 DUAL 
5. ~n~(P v Q) 3, 4 MT 
6. O(PvQ) 5 DUAL 

Note the use of the derived rule modus tollens at line 5. Derived rules for classical 
propositional logic (see Section 4.4) are all available in Leibnizian modal logic. 

N and K are used together once again in this derivation of the theorem 
'b 0~P —-DP': 

12 The name originates with the logician C. I. Lewis, whose pioneering work on 
modal logic dates from the first few decades of the twentieth century. Lewis ex-
plored a number of modal systems, which he christened with such unmemorable 
labels. Inexplicably, the labels stuck. 

13 This theorem is problem 2 of Exercise 4.4.2. 
14 See problem 6 of Exercise 4.4.2. 



3 3 0 CHAPTER 11 

1. 
2. 
3. 
4. 
5. 
6. 0 - P 

0~P 
—P 

•P —•—P 
-•P 
-•P 

H (for —>1) 
1 DUAL 
N (P —• —P)15 

3 K 
2, 4 MT 
1 - 5 —I 

However, a very different strategy may be used to prove the related theorem 
'(- n~P—• ~0P ' : 

1. 
2. 
3. 
4. 
5. 
6. • ~ P 

•~P 

- O P 
~ 0 P 

OP -•~p 

•~P & -D-P 

H ( f o r - I ) 
H (for -I) 
2 DUAL 
1, 3 &I 
2 - 4 ~I 
1 -5 —I 

Here, after hypothesizing the theorem's antecedent for conditional proof, we em-
ploy an indirect proof, hypothesizing ' 0 P' for reductio at line 2. The use of DUAL 
at line 3 immediately provides a contradiction, which is recorded at line 4, and the 
conclusion follows by easy steps of - I and —>1 at lines 5 and 6. 

The following proof of the sequent 'n(P —»• Q) t- n~Q —• n~P', which is a kind 
of modalized version of modus tollens, displays further uses of N and K: 

1. n(P —• Q) A 
2. n((P — Q) — (~Q - ~P)) N ((P - Q) - (~Q - ~P)) 
3. D(P —Q) —n(~Q —~P) 2 K 
4. n(~Q —• ~P) 1 , 3 — E 
5. D-Q-vD-P 4 K 

The necessitation rule N is used at line 2 with the theorem 'I- (P —• Q) —•• (~Q —* 
~P)', which was proved in Section 4.4. In the use of K at line 3, <J> is 'P —• Q' and 

is '~Q — ~P', but at line 5 O is l~Q' and ¥ is '~P'. 
The B rule is used in the following proof of ' 0 DP f- P': 

1. OnP A 
2. ~P H (for ~I) 
3. • 0~P 2 B 
4. •(0~P —»~nP) N (0 ~P —• 
5. • 0 - P —a~nP 4 K 
6. -•-•P 1 DUAL 
7. - • 0 ~ P 5, 6 MT 
8. • 0~P & - D 0 - P 3, 7 &I 
9. ~~P 2 - 8 - 1 

10. P 9 - E 

15 See problem 3 of Exercise 4 .4 .2 . 
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Note the use of N with the previously proved modal theorem '0~P 
line 4. 

We next prove the theorem 'b 0 OP —*• OP', using the S4 rule: 

OP) 

-•P' at 

1. OOP H (for —>1) 
2. •~p H (for ~I) 
3. ••~p 2S4 
4. •(•~p -V - OP) N (D~P — 
5. ••~p —• • -OP 4 K 
6. •~0P 3 , 5 — E 
7. ~D~ OP 1 DUAL 
8. • - 0 P & - • - 0 P 6 , 7 & I 
9. 2 - 8 - 1 

10. OP 9 DUAL 
11. OOP — OP 1-10—I 

This theorem can easily be strengthened to the biconditional 'OP — 0 OP', using 
the previously proved sequent 'P b OP' as a derived rule. This biconditional shows 
that repetition of possibility operators is in effect redundant in Leibnizian logic. 
The same can be shown for necessity operators—that is, 'b DP <-»• moP', but the 
proof is left as an exercise. 

As in propositional and predicate logic, we may use derived rules. We will 
not, however, bother to name them, since few have widely used names. Instead, 
we simply list the previously proved sequent to the right, together with the line 
numbers of the premises (if any) that are instances of the previously proved se-
quent's premises. (Rules derived from theorems have no premises, and we cite no 
lines for them.) This proof of 'n(P —* Q) b OP —• OQ' uses the previously proved 
sequent 'D(P —• Q) b n~Q —*• n~P' as a derived rule at line 4: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

•(P Q) 
OP 

OP 
OQ 

OQ 

H (for —I) 
•~Q H (for ~I) 
•~Q — D~P l n ( P - Q ) 
•~P 3 , 4 — E 
~D~P 2 DUAL 
•~P & ~o~P 5, 6 Scl 

3 - 7 ~I 
8 DUAL 
2 - 9 —I 

•~p 

Notice the use of indirect proof with the duality rule to obtain 'OQ'. 
As I pointed out in Section 4.4, proof of a sequent establishes the validity of 

any formula that shares that sequent's form. Thus, when we use a sequent as a 
derived rule, we may use any instance of it. The following proof of the sequent 
' -a = b h n~a = b' utilizes the previously proved sequent 'n(P —»- Q) b OP —1• OQ' 
as a derived rule at line 5. This sequent is used, however, in the form 'n(a = b —<• 
•a = b) b Oa = b —» O^a = b', where 'a = b' replaces 'P' and 'na = b' replaces 'Q\ 
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Similarly, the previously proved sequent 'OoP I- P' is used in the form 'Oca = b b 
a = b' at line 7. 

1. ~a = b A 
2. -•~a = b H (for ~I) 
3. Oa = b 2 DUAL 
4. •(a = b-+ na = b) N (a = b —» Da = b) 
5. Oa = b —» Ona = b 4 m(P —* Q) f- OP — OQ 
6. Ona = b 3 , 5 — E 
7. a = b 6 OaPhP 
8. a = b Sc ~a = b 1, 7 &I 
9. —n~a = b 2 - 8 ~I 

10. •~a = b 9 ~E 

At line 4 we use the necessitation rule with the theorem 'h a = b — Da = b\ We 
didn't actually prove this theorem, but its proof is trivial, given the • = rule, and is 
left for an exercise below. 

This proof shows that not only is identity necessary as the • = axiom schema 
asserts, but also nonidentity is necessary—a result fully appropriate in light of the 
semantics of rigid designation. 

Our next result establishes that whatever is possible is necessarily possible— 
that is, (on Leibnizian semantics) possible with respect to any world. The sequent 
expressing this idea is 'OP I- • OP': 

1. OP 
2. DOOP 
3. •(OOP-* OP) 
4. DOOP — DOP 
5. nOP 

A 
I B 
N (OOP 
3 K 
2 , 4 — E 

OP) 

And finally we show that whatever is even possibly necessary is necessary. 
That is, the sequent 'OnP I- nP' is provable: 

1. OOP 
2. n ( O n P - P ) 
3. DO nP —nP 
4. nOnP 
5. DP 

A 
N(OdP 
2 K 
1 OPFdOP 
3 , 4 — E 

P) 

Exercise 11.4 

Prove the following sequents: 

1. ha = b — oa = b 
2. oP I- Q(P v Q) 
3. h •—P — nP 
4. 0(P & Q) f- OP 
5. nQ 1- n(P —• Q) 
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6. ~ 0 P b n(P — Q ) 
7. b nP *-* nnP 
8. b ~ 0 ( P & ~ P ) 
9. DP, nQ h o(P & Q) 

10. DPbnnaP 



CHAPTER 

KRIPKEAN MODAL LOGIC 

12.1 KRIPKEAN SEMANTICS 

There is among modal logicians a modest consensus that Leibnizian semantics 
accurately characterizes logical possibility, in both its formal and informal vari-
ants. As we saw in Section 11.3, however, this does not tell us all we would like to 
know about informal logical possibility, because Leibnizian semantics does not 
specify which worlds to rule out as embodying informal contradictions. (Is the 
concept of a dimensionless blue point, for example, contradictory? What about 
the concept of a God-fearing atheist? The concept of a largest number?) Still, the 
semantic rules of Leibnizian logic as laid out in Section 11.2 and the inference rules 
of Section 11.4 do arguably express correct principles of both formal and informal 
logical possibility. 

But logical possibility, whether formal or informal, is wildly permissive. 
Things that are logically possible need not be metaphysically possible (i.e., possible 
when we take essence into account). And things that are metaphysically possible 
need not be physically possible (i.e., possible when we take the laws of physics into 
account). It seems both logically and metaphysically possible, for example, to 
accelerate an object to speeds greater than the speed of light. But this is not physi-
cally possible. Moreover, what is physically possible need not be practically possi-
ble (i.e., possible when we take actual constraints into account). It is physically 

3 3 4 
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possible to destroy all weapons of war, but it may not (unfortunately) be practi-
cally possible. Logical, metaphysical, physical, and practical possibility are all 
forms or degrees of alethic possibility. And there are, no doubt, other forms of 
alethic possibility as well. Furthermore there are, as we saw earlier, various non-
alethic forms of "possibility": epistemic possibility, moral permissibility, temporal 
possibility, and so on. Does Leibnizian semantics accurately characterize them 
all—or do some modalities require a different semantics? 

Consider the metatheorem, proved in Section 11.2, that any sequent of the 
form •<£ b O is valid. This seems right for all forms of alethic possibility. What is 
logically or metaphysically or physically or practically necessary is in fact the case. 
There are corresponding principles in epistemic, temporal, and deontic logic: 

Modal i ty Principle Mean ing 

Epistemic sKObO s knows that O; so <3> 

Temporal It has always been the case that <I>; 
so <E> 

Deontic OObO It is obligatory that O; so O 

The first is likewise valid. But the temporal and deontic principles are invalid. 
What was may be no longer, and what ought to be often isn't. Both temporal logic 
and deontic logic, then, have non-Leibnizian semantics. 

Or, to take a more subtle example, consider sequents of the form no f- ••<£, 
which are also valid on a Leibnizian semantics. Some variants of this principle in 
different modalities are given below: 

Modal i ty Principle Mean ing 

Alethic •<J> |- ••<£ It is necessary that O; so it is 
necessarily necessary that 

Epistemic sK<D b sKsKO s knows that <I>; so s knows that s 
knows that <J> 

Temporal H O b H H O It has always been the case that O; so 
it has always been the case that it has 
always been the case that <£ 

Deontic 0 $ b O O O It is obligatory that <5; so it is 
obligatory that it is obligatory that $ 

1 Necessity can be understood here in any of the various alethic senses—logical, 
metaphysical, physical, practical, and so on. 
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The temporal and alethic versions are plausible, perhaps; but the epistemic and 
deontic versions are dubious. The epistemic version expresses a long-disputed 
principle in epistemology; it seems, for example, to rule out unconscious knowl-
edge. And the deontic version expresses a kind of moral absolutism: The fact that 
something ought to be the case is not simply a (morally) contingent product of 
individual choice or cultural norms, but is itself morally necessary. These are con-
troversial theses. We should suspect a semantics that validates them. 

In fact, Leibnizian semantics seems inadequate even for some forms of alethic 
modality. Consider the sequent 'P (- • <> P' with respect to physical possibility. (This 
sequent is valid given a Leibnizian semantics; see problem 5 of Exercise 11.2.2.) 

What does it mean for something to be physically possible or physically 
necessary? Presumably, a thing is physically possible if it obeys the laws of physics 
and physically necessary if it is required by those laws. But are the laws of physics 
the same in all worlds? Many philosophers of science believe that they are just the 
regularities that happen to hold in a given world. Thus in a more regular world 
there would be more laws of physics, in a less regular world fewer. If so, then the 
laws of physics—and physical possibility—are world-relative.2 Leibnizian seman-
tics treats possibility as absolute; all worlds are possible from the point of view of 
each. But our present reflections suggest that physical possibility, at least, is world-
relative. 

To illustrate, imagine a world, world 2, in which there are more physical 
laws than in the actual world, which we shall call world 1. In world 2, not only do 
all of our physical laws hold, but in addition it is a law that all planets travel in 
circular orbits. (Perhaps some novel force accounts for this.) Now in our universe, 
planets move in either elliptical or circular orbits. Thus in world 1 it is physically 
possible for planets to move in elliptical orbits (since some do), but in world 2 
planets can move only in circular orbits. Since world 2 obeys all the physical laws 
of world 1, what happens in world 2, and indeed world 2 itself, is physically 
possible relative to world 1. But the converse is not true. Because what happens in 
world 1 violates a physical law of world 2 (namely, that planets move only in 
circles), world 1 is not possible relative to world 2. Thus the very possibility of 
worlds themselves seems to be a world-relative matter! 

Kripkean semantics takes the world-relativity of possibility seriously. Within 
Kripkean semantics, various patterns of world-relativity correspond to different 
logics, and this variability enables the semantics to model a surprising variety of 
modal conceptions. 

The fundamental notion of Kripkean semantics is the concept of relative 
possibility (which is also called alternativeness or accessibility). Relative possibility 
is the relation which holds between worlds x and y just in case y is possible relative 
to x. The letter '<=/?' is customarily used to express this relation in the metatheory. 
Thus we write 

2 I should confess that virtually everything I am saying here is controversial. But I 
have suppressed objections, not because I am confident that what I am saying here 
is true, but because I am trying to trace a line of thought that makes the transition 
from Leibnizian to Kripkean semantics intelligible. The metaphysics I spin out in 
the process should be regarded as illustration, not as gospel. 
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xj?y 

to mean "y is possible relative to x" or "y is an alternative to x" or "y is accessible 
from x." (These are all different ways of saying the same thing.) So in the example 
just discussed it is true that IjQ ("world 2 is possible relative to world 1"), but it 
is not true that 2<=/?l. Each world is also possible relative to itself, since each obeys 
the laws which hold within it. Hence we have and 2^2 . The structure of this 
two-world model is represented in the following diagram, where each circle stands 
for a world and an arrow indicates that the world it points to is possible relative 
to the world it leaves: 

A Kripkean model is in most respects like a Leibnizian model, but it contains 
in addition a specification of the relation <=/?—that is, of which worlds are possible 
relative to which. This is given by defining the set of pairs of the form y> where 
y is possible relative t o I n the example above, for instance, J? is the set 

{<1,2>, <1,1>, <2, 2>} 

The definition of a Kripkean model mimics that of a Leibnizian model, with the 
addition of the requirement that <=/? be defined (item 2 below): 

DEFINITION A Kripkean valuation or Kripkean model Y for a formula or 
set of formulas of modal predicate logic consists of the following: 

1. A nonempty set <14̂  of objects, called the worlds of T . 
2. A relation consisting of a set of pairs of worlds from cwv. 
3. For each world w in <T*V a nonempty set of objects, called the 

domain of w. 
4. For each name or nonidentity predicate cr of that formula or set of 

formulas, an extension T(ct) (if cr is a name) or V(cr, w) (if a is a 
predicate and w a world in mv) as follows: 

i. If CT is a name, then Y(cr) is a member of the domain of at least 
one world. 

ii. If cr is a zero-place predicate (sentence letter), Y(cr, iv) is one 
(but not both) of the values T or F. 

iii. If cr is a one-place predicate, Y(cr, iv) is a set of members of {Jbw. 
iv. If cr is an n-place predicate (n >1), Y(cr, iv) is a set of ordered n-

tuples of members of !bw. 
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The addition of <=/? brings with it a slight but significant change in the valua-
tion rules for and ' 0Necess i ty at a world w is no longer simply truth in all 
worlds, but truth in all worlds that are possible relative to w. Likewise, possibility 
in w is truth in at least one world that is possible relative to w. Thus, instead of the 
valuation rules 11 and 12 for Leibnizian semantics (Section 11.2), Kripkean se-
mantics has the modified rules: 

11' T(nO, w) = T iff for all worlds u such that u) = T; 
T(nO, w) = F iff for some world u, w^u and Y(<2>, w) * T. 

12' y(O <£, w) = T iff for some world u, w^u and y(<X>, u) = T; 
y{ 0 <E>, w) = F iff for all worlds u such that w^u, y(O, u) * T. 

No other valuation rules are changed. 
Consider now a Kripkean model for propositional logic (which allows us 

to ignore the domains of the worlds), using the sentence letter 'P', which we inter-
pret to mean "Planets move in elliptical orbits." Let <Wr be the set [1, 2} and J? be 
the set 

{<1, 2>, <1,1>, <2, 2>} 

as mentioned and diagramed in the example recently discussed. Suppose further 
that 

y ( T \ i ) = T 
y('P', 2) = F 

as in that example. (That is, planets move in elliptical orbits in world 1 but not in 
world 2.) Now the sequent 'P b • 0 P', which was valid on Leibnizian semantics, is 
invalid on this Kripkean model. For y('P\ t) = T, but y('DOP\ 1) * T. That is, 
world 1 provides a counterexample. 

We can see that T('DOP', 1) * T as follows. Note first that the only world in 
<Wr accessible from world 2 is 2 itself; in other words, the only world u in such 
that 2 j?u is, world 2. Moreover, y(£P', 2) * T. Hence for all worlds u in such 
that 2j?u, y('P\ u) * T. So by rule 12', y ( ' 0 P', 2) * T. Therefore, since 1^2, there 
is some world x in <WY (namely, world 2) such that and Y(c OP', x) * T. It 
follows by rule 11' that y f n O P ' , 1) T. We restate this finding as a formal 
metatheorem: 

METATHEOREM: The sequent'? b OOP' is not valid on Kripkean 
semantics. 

PROOF: As given above. 

Moreover, neither of the other sequents mentioned in this section—'DP b P' and 
'•P b nap*—is valid, either. Let's take 'OP b P' first. 
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META THEOREM: The sequent 'DP f- P' is not valid on Kripkean 
semantics. 

PROOF: Consider the following Kripkean model for propositional 
logic. Let the set <Wr of worlds he {], 2} and the accessibility relation 
be the set {< 1, 2>, <2, 2>}, and let 

r f p \ t) = F 
r ( ' F , 2 ) - T 

Now T( 'P 4 ,2) = T ana 2 is the only world possible relative to 1; that is, 
2 is tbe only world u such that Hence for all worlds u such that 
1 T ( T \ u) = T. Therefore by rule 11% T('oP\ 1) = T. Due V ( T \ 1) 
^ }'. Therefore 'OP 1- P* is not valid on Kripkean semantics. QED - j 

This result poses a problem. Intuitively, 'DP b P' is (or ought to be) vr'id on the 
alethic and epistemic interpretations. But it should not come out valid on the 
deontic interpretation (which, to distinguish it from the other interpretations we 
usually write as 'OP h P') or on the temporal interpretation discussed above. 

The reasoning for the deontic interpretation is straightforward. Think of 
world 1 as the actual world, world 2 as a morally perfect world, and 'P' as express-
ing the proposition "Everything is morally perfect." Then, of course, 'P' is true in 
world 2 but not in world 1. Moreover, think of as expressing the relation of 
permissibility or moral possibility. Now world 2 is morall) permissible, both rela-
tive to itself and relative to world 1 (because what is morally perfect "s surely 
morally permissible!). Bui world 1 is not morally permissible, either relative to 
itself or relative to world 2, because all kinds of bad (i.e., morally impermissible) 
things go on in it. Our model, then, looks like this: 

Now since in this model eve'~y world that is morally permissible relative io 
the actual world is morally perfect (since there is, in the model, just one such 
world, world 2), it follows (by the semantics for i e., formally, rule 11') that it 
ought to be the case in world 1 that everything is morally perfect, even though that 
is not the case in world 1. Thus, when we interpret as "it ought to be the case 
that "3 we can see how (- P' can be invalid. Kripkean semantics, then, seems 

-v \!Ce could, of course, have used the symbol 'O' instead of to express the deontic 
reading, but we are considering several different readings simultaneously here. 
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right for the deontic interpretation, but wrong for the epistemic, temporal, and 
alethic interpretations. 

But in fact Kripkean semantics is applicable to the other interpretations, as 
well, provided that we are willing to relativize our concept of validity. The key to 
this new conception can be found by reexamining the proof from an alethic view-
point. From this viewpoint the proof is just wrong. Surely, if it is alethically neces-
sary that P, then P. But where is the mistake? 

It lies, from the alethic point of view, in the specification of <=/?. The alethic 
sense of possibility requires that every world be possible relative to itself, for what 
is true in a world is certainly alethically possible in that same world. But the 
relation <=R used in the proof does not hold between world 1 and itself. The model 
is therefore defective from an alethic point of view. 

To represent the alethic intepretation, we musi insist that <=/? be reflexive— 
that each world in the set n/Ky of worlds be possible relative to itself. Thus the 
model given above as a counterexample is not legitimate for the alethic interpre-
tation. The only admissible models—the only models that count—for the alethic 
interpretation are models whose accessibility relation is reflexive. This is also true 
for the epistemic modalities, but not for the deontic or temporal ones. 

This suggests the following strateg}: Each of the various modalities is to be 
associated with a particular set of admissible models, that set being defined by 
certain restrictions ~n the relation <=/?. Validity, then, for a sequent expressing a 
given modality is the lack of a counterexample among admissible models for the 
particular sorts of modal operators it contains. Other semantic notions (consis-
tency, equivalence, and the like) will likewise be defined relative to this set of 
admissible models, not the full range of Kripkean models. In this way we can 
custom-craft a different semantics for each of the various modalities. 

Let us, then, require admissible models for alethic or epistemic modalities, 
but not for the deontic or .emporal ones, to be reflexive. Then we must redefine 
the notion of a valid sequent as follows: 

A sequent is valid relative to a given set of models aluations) iff there is no 
model in that set containing a world in which the sequent's premises are 
true and its conclusion is not true. 

To say that a sequent is valid relative to Kripkean semantics in general is to say 
that it has no counterexample in any Kripkean model, regardless of how <=/? is 
structured. 

With this new relativized notion of validity, we can now prove that all se-
quents of the form DO b O are valid—relative to the class of reflexive models: 

METATHEOREM: A11 sequents of the form •<!> b <2> are valid relative 
to the set of models whose accessibility relation is reflexive. 

PK • 3CF: Suppose for reduci io thai thjs h not the case—that is, for .SOME 
formula there exists a valuation Y whose accessibility rein-
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tion J? is reflexive and some world w of T such that Y(CKJ>, iv) 
= T and T(<£, w) * T. Now since T(DO, w) = T, by rule XV 
"(/'(<[>, u) - T, for every world u such that wj?tt. But since <=/? is 
reflexive, Therefore T(<£, w) =? 1, which contradicts 
what we had concluded above. 

Thus we have shown that all sequents of the form b <X> are valid 
relative to the set of models whose accessibility relation is reflex-
ive. QED 

We may say, then, that all sequents of the form •<£> b <l> are valid when is 
interpreted as an alethic or epistemic operator, but not if we internret it as a deontic 
or temporal operator of the sort indicated earlier. But the validity of all sequents 
of this form is the same thing as the validity of the T rule introduced in Section 
11.4. Thus we may conclude that the T rule is valid for some modalities but not 
for others. 

It is the reflexivity of the accessibility relation that guarantees that sequents 
of the form •<£> b O are valid. Such sequents were valid as a matter of course on 
Leibnizian semantics, where it is assumed that each world is possible relative to 
each, and hence that each world is possible relative to itself. Accessibility in Leib-
nizian semantics is therefore automatically reflexive. But Kripkean semantics li-
censes accessibility relations that do not link each v, orld to each, thus grounding 
the construction of logics weaker in various respects than Leibnizian logic. 

Just as the reflexivity of <=/? guarantees the validity of •<£> b <3?, so other require-
ments on <=/? correspond to other modal principles. Principles which hold for all 
Kripkean models apply to all the logics encompassed by Kripkean semantics. 
Those which hold only in restricted classes of Kripkean models (such as models in 
which is reflexive) are applicable to some intepretations of the modal operators 
but not to others. 

We noted above that the principle b ••<£> seems plausible for temporal 
and alethic modalities, but questionable for deontic and epistemic ones. This prin-
ciple is in fact just the S4 rule discusser in Section 11.4. It is valid on Leibnizian 
semantics, as we saw in the previous chapter, but it is invalid on Kripkean seman-
tics, since, for example, the instance 'nP b ••?' is invalid: 

MEIATHEOREM: '/he sequent '•!> b POP' is not valid on Kripkean 
semantics. 

moot: Consider the following Kripkean model for prepositional 
logic. Let rhe set of worlds be {1, 2, 3] r̂td the accessibility relation 

be the set {<1,2>, <2, 3>). and let 

T f P , 1) =*T 
T C P , 2) = T 
Y('P\ 3) ® F 
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Now T('P\ 2) = T and 2 is the only world possible relative to t, that is, 
2 is the onl> world u such that Xeffu. I lence for all worlds « such that 
\jftt, TCP', u) ~ T. Therefore by rule 11T{ 'OP\ 1) =T. However, since 
2^3 and V('P% 3) * T, by rule 11\ r('OP', 2) * T. And since 1^2 and 
T(5QP% 1) * T, again by rule 1 i\ y(<oaP\ 1) * T. Therefore, since 
T(enP', 1) = 1 and T( inoP\ I) * T, we have a counterexample, and so 
'op b ••P' is not valid on Kripkean semantics. QED 

I 

Yet the S4 rule is valid relative to models whose accessibility relation is transitive. 
The relation <=R is transitive if and only if for any worlds x, y, and z, if and 
y<=RZ, then x*Rz. Think of this in relation to physical possibility. We said that a 
world y is physically possible relative to a world x if and only if y obeys the same 
physical laws {and perhaps some additional physical laws as well). That is, 

x<=Ry if and only if y obeys all the physical laws that hold in x. 

Now clearly if y obeys all the laws that hold in x and z obeys all the laws that hold 
in y, then z obeys all the laws that hold in x. That is, if xJ^y and y*Rz> ther xj%z. 
So the accessibility relation for physical possibility is transitive. The next meta-
theorem shows how we get from this fact about the accessibility relation to the 
conclusion that all sequents of the form •<!> b ••<$» are valid, where is interpreted 
as physical necessity. 

MET A1 Ti EOREM: All sequents of the form •<!> b DOS* are valid rela-
tive to (he set of models whose accessibility :elation is transitive. 

PROOF: Suppose for reductio that this is not t he case—that is, for some 
formula <t> there exists a valuation T wh« <se accessibility rela-
tion <=v is transitive and some world x of "V such that Y(D3\ x) 
- T and °f' x) * T. Now since T(D<J>, x) = T, by rule 1J \ 

"('J', u) = T for every world u such that xJ&t. Rut since t"(COI>, 
x) * T, by rule 11' there is a world y such that x.sy and 1 '{HO, 
y) it. T. And since 1 "(oO, y) T, again by rule ] 1' there is a 
world z such that y<Rz and V{<J>, z) T. Now since x<Ay and 

and is transitive, it follows thar x^z. But we saw above 
that Y(0 , u) - T for every world u such that x^Ru. So in partic-
ular Y{<£, z) = Tj contrary to what we just concluded 

7 hus all sequents of the form Oti> b ••<£> are valid relative to rhe set of 
models whose accessibility relation is transitive. QED 

r"or our last example, we return to the principle <!> b •<><!>, hich was valid 
on Leibnizian semantics (indeed, it is just the B rule introduced in Section 11.4) 
but seemed invalid for physical possibility. (The fact tha- planets move in elliptical 
orbits coes not mean that it is necessarily possible that planets move in elliptical 
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orbits, for there are physically possible worlds in which planetary orbits are nec-
essarily circular and hence in which elliptical orbits are impossible.) The pronerty 
of <=/? that would make this sequent valid is symmetry. <=/? is symmetric if and only 
if for any worlds x and y, if x*Rys then y*Rx. The accessibility relation for physical 
possibility is not symmetric, since a world with our physical laws plus some "ex-
tra" laws v> ould be physically possible relative to our world, but ours would not 
be physically possible relative to it (since our world violates its "extra" laws). 
Logical possibility, however, presumably does have a symmetric accessibility 
relation—assuming (as is traditional) that the laws of logic are the same for all 
worlds. The final metatheorem in this section shows why symmetry guarantees the 
validity of I- nOO. 
< * 

METATHEOREM: All sequents of the form <T> b •<><£ are valid rela-
tive to the set of models whose accessibility relation is symmetric. 

PROOi : Suppose for reductio that this is not the case—that is, for some 
formula there exists a valuation V whose accessibility rela-
tion <zR is symmetric ana some world % ofV such that x) -
T and r ( o 0 3 > , x) * T. How since T(nOO, x) * T, by rule 11' 
there is a world y such that Xafity and ¥ f 0 <+>, y) * T. Ami since 
V{0<£>, y) * f, by rule 12' for all worlds u such tha ty j f t t , 
u) t T. But is symmetric; and so since it follows that 
y ^ x . Thus since for all worlds u such that >"(<$>, u) ?= T, 
it follows in particular that T(<t>, x) * f. But we concluded 
above that 'V'(0, x) - T, which is a contradiction. 

So, contrary to our hypothesis, 0 f- n0<$> is valid relame to the set of 
models whose accessibility relation is symmetric. QED 

We have said so far that the accessibility relation for all forms of alethic 
possibility is reflexive. For physical possibility, I have argued that it is transitive as 
well. And for logical possibility it seems also to be symmetric. Thus the accessibil-
ity relation for logical possibility is apparently reflexive, transitive, and symmetric. 
It can be proved, though we shall not do so here, that these three characteristics 
together define the logic S5, which is characterized by Leibnizian semantic... That 
is, making the accessibility relation reflexive, transitive, and symmetric has the 
same effect on the logic as making each world possible relative to each. 

Leibnizian semantics can in fact be viewed as a special case of Kripkean 
semantics—the case in which we restrict admissible models to those whose acces-
sibility relation is universal, that is, those in which each world is accessible from 
each. Universal relations are, of course, automatically reflexive, transitive, and 
symmetric. Thus, for example, any sequent which is valid in all reflexive models is 
also valid in all universal models. Sequents valid on Leibniziar semantics can from 
the Kripkean perspective be regarded as sequents valid relative to the special class 
of models with universal accessibility relations. Since Leibnizian semantics seems 



3 4 4 CHAPTER 11 

appropriate for logical possibility, from a Kripkean point of view logical possibility 
is characterized by the class of Kripkean models with universal accessibility 
relations. 

If we drop the requirement of symmetry, we lose the law O b nOO (the 
inference rule B of Section 11.4), and principles derivable from it, and obtain 
a weaker logic, S4, which is a good candidate for being the logic of physical 
possibility. 

Logics for the other modalities involve other principles and other properties 
of <=/?, many of which are disputed. The chief merit of Kripkean semantics is that it 
opens up new ways of conceiving and interrelating issues of time, possibility, 
knowledge, obligation, and so on. For each we can imagine a relevant set of worlds 
(or moments) and a variety of ways an accessibility relation could structure this 
set and define an appropriate logic. This raises intriguing questions that, were it 
not for Kripke's work, we never would have dreamed of asking. 

Exercise 12.1 

Prove the following metatheorems. [Note that saying that a form is valid relative 
to the set of all Kripkean models is just another way of saying that it is (unquali-
fiedly) valid on Kripkean semantics.] 

1. Oh 0<E> is valid relative to the set of models whose accessibility relation is 
reflexive. 

2. OOOb OOis valid relative to the set of models whose accessibility relation is 
transitive. 

3. OdO b O is valid relative to the set of models whose accessibility relation is 
symmetric. 

4. 'P b OP' is not valid relative to the set of all Kripkean models. 
5. 'OOP b OP' is not valid relative to the set of all Kripkean models. 
6. ' OnP b P' is not valid relative to the set of all Kripkean models. 
7. •(<£ —• b DO n1? is valid relative to the set of all Kripkean models. 
8. b 0<X> is valid relative to the set of models whose accessibility relation is 

reflexive. 
9. 0 <I> v 0 ~<I> is valid relative to the set of models whose accessibility relation is 

reflexive. 
10. ~ 0 (<J> & ~<D) is valid relative to the set of all Kripkean models. 

12.2 INFERENCE IN KRIPKEAN LOGICS 

In Section 11.4 we introduced the full Leibnizian logic S5. Since then we have seen 
that some of the rules of S5 are inappropriate for certain forms of modality. The T 
rule (from DO infer <t>), for example, is plainly invalid when '•' is taken to express 
obligation, as it is in deontic logics. We have now seen that this rule was validated 
by the reflexivity of the accessibility relation. Likewise, the B rule (from O infer 
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• 0<E>), which is validated by the symmetry of the accessibility relation, seems 
invalid for physical possibility. And again the S4 rule (from infer ••<!>), which 
is validated by the transitivity of the accessibility relation, is of questionable valid-
ity for several modalities. 

Just as Kripkean semantics permits nonreflexive, nonsymmetric, or nontran-
sitive accessibility relations, which are fragments, as it were, of the full universal 
accessibility relation of Leibnizian semantics, so Kripkean logics may be fragments 
of the full Leibnizian logic S5. Less metaphorically, Kripkean logics may lack some 
of the rules of inference (either basic or derived) that are available in S5. 

There are, however, certain rules that are valid relative to the set of all Krip-
kean models. These rules, in other words, have no counterexamples no matter 
how severely we diminish the accessibility relation. Three rules in particular are 
fundamental in this way: 

Duality (DUAL) From either of 0 O and ~n~4>, infer the other; from either 
of nO and - 0 ~<D, infer the other. 

K rule (K) From •(<& — infer (aO — •¥). 

Necessitation (N) If O has previously been proved as a theorem, then any 
formula of the form may be introduced at any line of a proof. 

These rules are common to all Kripkean modal logics. Together with the ten basic 
rules of classical propositional logic they constitute a logic that is sound and com-
plete relative to the set of all Kripkean models. This logic is known as the system 
K (for Kripke!). In other words, a sequent of propositional modal logic (modal 
logic without the identity predicate or quantifiers) is provable in the system I< iff it 
has no counterexample in any Kripkean model.4 

K itself is not very interesting. But by adding various rules to K we may 
obtain differing logics that are useful for different purposes. Each rule corresponds 
to a particular structural requirement on the accessibility relation. Imposing new 
structural requirements diminishes the range of admissible models—models that 
may serve as counterexamples. Thus imposing new structural requirements on <=/? 
increases the number of valid rules. Among systems we have considered, the one 
with the most structural requirements is S5, for whose admissible models <=/? must 
be reflexive, transitive, and symmetric. In a sense S5 is the maximal Kripkean logic, 
since it is sound and complete for the most restrictive class of models, the class of 
models whose accessibility relation is universal. (Though reflexivity, transitivity, 
and symmetry don't entail universality, the class of all universal models determines 
the same logic, S5, as the class of reflexive, transitive, and symmetric models does.) 

4 Proofs of the soundness and completeness of a great variety of Kripkean systems 
may be found in Brian F. Chellas, Modal Logic: An Introduction (Cambridge: 
Cambridge University Press, 1980), chap. 3. 
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Table 12.1 summarizes some characteristics of five important Kripkean logics. 
But there are, in fact, infinitely many Kripkean logics, dozens if not hundreds of 
which have received detailed treatment. Table 12.1, then, presents only a small 
sample. 

Exercise 12.2 

Note that in the problems below it is not safe to use the sequents proved in Section 
11.4 as derived rules, since these were proved using the full logic of S5 and the 
systems in which we are working are fragments of S5 in which certain rules are 
unavailable. Nevertheless, some of the strategies illustrated in that section may be 
useful here. 

I. Construct proofs for the following sequents in the system K: 
1. ~OPhD~P 
2. ~DPh 0~P 
3. Hn(P — P) 

II. Construct proofs for the following sequents in the system D: 
1. h 0(P —P) 
2. b ~D(P &C ~P) 
3. ~ 0 P b ~aP 
4. DnPbnOP 

ID. Construct proofs for the following sequents in the system T: 
1. nPb OP 
2. ~ 0 P b~P 
3. ~Pb~nP 

IV. Construct proofs for the following sequents in the system S4: 
1. b O P - OOP 
2. 0~nPb 0~P 
3. ~ 0 P b n~OP 

12.3 STRICT CONDITIONALS 

We have until now been using the material conditional, symbolized by to 
render the English operator ' if . . . then' into formal logic. This practice, as we 
noted in Section 3.1, is, strictly speaking, illegitimate. The material conditional is 
at best only a loose approximation to 'if . . . then'. Many inferences which are 
valid for the material conditional are invalid for English conditionals. Consider, 
for example: 

Socrates grew to manhood. 
.'. If Socrates died as a child, then Socrates grew to manhood. 

Socrates did not die as a child. 
.'. If Socrates died as a child, then Socrates grew to manhood. 
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TABLE 12.1 
Some Important Kripkean Propositional Modal Logics 

Logic Basic Rules* 
Accessibility 
Relation Application 

K DUAL From either of 0 O 
and -•-<£>, infer the other; 
from either of •<£ and 
~ 0~<E>, infer the other. 
K From • ( $ — ¥ ) , infer 
(•<!>-••¥). 
N If O has previously been 
proved as a theorem, then 
any formula of the form 
may be introduced at any 
line of a proof. 

No restrictions Minimal Kripkean logic 

D DUAL, K, and N, together 
with: 
D From DO infer O O . 

Serial (see 
Section 13.1) 

Good candidate for 
minimal deontic logic 

T DUAL, K, and N, together 
with: 
T From •<£ infer O. 

Reflexive Minimal alethic logic 

S4 DUAL, K, N, and T, 
together with: 
S4 From •<£ infer • •<£>. 

Reflexive, 
transitive 

Good candidate for 
logic of physical 
possibility; closely 
related to intuitionistic 
logic (see Section 16.2) 

S5 DUAL, K, N, T, and S4, 
together with: 
B From 3> infer a O O . 

Reflexive, 
transitive, 
symmetric 

Logic of logical 
possibility, perhaps 
other kinds of possi-
bility as well (see 
Section 13.2) 

"'In addition to the ten rules of classical propositional logic. 

It is not the case that if Socrates was a rock then Socrates was a man. 
.\ Socrates was a rock, but not a man. 

If we eliminate auto accidents, then we save thousands of lives. 
If we nuke the entire planet, then we eliminate auto accidents. 

.\ If we nuke the entire planet, then we save thousands of lives. 

If the Atlantic is an ocean, then it's a polluted ocean. 
If the Atlantic is not a polluted ocean, then it's not an ocean. 
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In each case, the premises are true and the conclusion is false in the actual world, 
using our ordinary understanding of the conditional. Yet in each case, the argu-
ment is valid if we interpret 'if. . . then' as the material conditional. The last two 
arguments have forms that at first glance appear to be paradigms of good reason-
ing: hypothetical syllogism, 

A — B — > C I - A — > C 

and contraposition, 

A —• B F- ~B — ~A 

(sometimes called "transposition"). Yet these forms are apparently invalid for 
'if . . . then'. 

C. I. Lewis, the inventor of S4, S5, and other modern modal systems, was 
one of the first formal logicians to investigate the disparity between English and 
material conditionals. Lewis noticed that ordinary English conditionals seemed to 
express, not just a truth function, but a necessary connection between antecedent 
and consequent. Defying skepticism about the intelligibility of the concept of nec-
essary connection, Lewis introduced in 1918 a new conditional, represented by 
the symbol '-3', which incorporated this idea. O -3 ¥ is true if and only if it is 
impossible for both O to be true and ^ false. <D -3 ^ is true, in other words, if and 
only if it is necessarily the case that if O then where 'if . . . then' signifies the 
material conditional. Thus '-3' is often introduced as a defined operator into modal 
systems using the definition 

0 - 3 ^ iff • (0 — vF) 

An equivalent definition in terms of the possibility operator is 

0 -3 ¥ i f f - 0 ( 0 8c 

Translated into Kripkean semantics, the truth conditions for the strict conditional 
are as follows: 

Y(<£ -3 *?,«/)= T iff for all worlds u such that wJ?u and Y(3>, u) = 
T, T(XF, u)= T 
Y(<E> -3 w) = F iff for some world u such that wJi'u, u) = T 
andT(XF, 

The strict conditional is in some respects a better approximation to English 
conditionals than is the material conditional. But the closeness of the approxima-
tion depends in part upon which brand of alethic necessity we intend the strict 
conditional to express. Usually, the necessity built into the connection expressed 
by English conditionals seems to be something more like practical than physical, 
metaphysical, or logical necessity. So, though like all alethic accessibility rela-
tions, should be reflexive, it is doubtful that it need also be transitive and symmet-
ric (as the accessibility relation for logical possibility probably is). Accordingly, we 
adopt as admissible for strict conditionals all and only those Kripke models in 
which cR is reflexive. 
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We began this section with five arguments, the forms of the first three of 
which were as follows: 

B b A — B 
~A b A — B 
~(A —» B) I- A ~B 

11 three arguments are valid, reading ' — a s the material conditional, but all are 
outrageous reading ' — a s an English conditional. (Indeed, the first two have often 
been colled the "paradoxes of material implication.") Yet, if we replace by '-3', 
we get the reasonable result that none of the three arguments is valid. 

Let's consider the sequent'! > b A -3 B' first. To facilitate comparison with the 
first argument above, think of 'B' as meaning "Socrates grew to manhood" and CA' 
as meaning "Socrates died as a child." Socrates did, of course, grow to manhood; 
yet it is (or was) possible for him to have died, as a child and not grown to >e a 
man. So the premise is true and the conclusion false. To represent this counter-
example formally we need two worlds: world I, representing the actual world, a 
world in which Socrates did grow to be a man, an< a merely possible world, world 
2 in which he died as a child: 

METAI WEOREM: ?lie sequen. *K b \ B' is invalid relative to he 
admissible models for .strict conditionals. 

I'ROOF: Consider the Kripkean model 1' ui which 

% - = { » , 2} T T A \ D = F 
{<i, 1>, <1 2>, <2,2>} ) = T 

Y('A\ 2) = '1 
r ( c B\ 2) = ; 

"h-s model is admissible for strict conditionals, because is reflexive. 
Since L=v2, Y('A\ 2}-7, and "('&". 2 ) * T , i t follows that Y('A -3 B', 1) 

. "bus, since T(eB\, ]) = t, the ser uent is invalid. ( • 

' .'he same counterexample establishes the invalidity of the s e q u e n t " b A -3 
B'. n̂ the actual world, Socrates di/ not die as a child, which maker '-A' true; but, 
since it was pojsible (relative to the ac ual world) that he did aiK. never grew to 
manhood ' V -3 I >' is false, 'roof of the invalidity of this sequent is left to the reader 
(see the exercise at the end of this ;.ecti >n). 

The sequent £~( \ 3 i ) b A ~B' is also invalid. '1 he fact that A does not 
necessitate B tells us nothing about the truth values of either A cr l>. 'he formal 
ireatment of this proL lem is left entirely to the reader. 

Though reasoning in these coun erintuitive pa .terns is no valid for the slrict 
conditional, many natural an- familiar patterns—modus ponens and modus tol-
lens, for example—are valid. So far, then, the strict conditional seem- to answer 
accurately to our understanding of 'if . . . then' in English. 
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the situation is not as tidy as it seems. The last two of our five arguments 
have the forms hypothetical syllogism and contraposition, respectively. These 
forms, as we saw, seem invalid for English conditionals, but they are valid for the 
strict conditional. \X'e shall prove this for contraposition only, leaving the proof 
for hypothetical syllogism as an exercise: 

vt ETATHEOREM: The sequent 'A -3 J J b ~B -3 -A' is valid relative to 
the admissible models for strict conditionals. 

I'KOOF: Suppose for reductio that this sequent is invalid relative io the 
admissible models. Then rhete exists some admissib'e mocel 
containing a world w such that T('A -3 B\ u>) - T and V('~B 
•3 ~A\ w) * T. Since ¥( l~B 3 ~A\ to) T, there exists a world 
u such that u>J?u, Y(*~B\ u) -1 and V('~A\ u) * T. Hence by 
the valuation rule for negation Y(4A*, a} - T and l-'C" f>\ it) * 
But since tvJ?u, this implies thar "K('A -3 B\ w) & 1, and so we 
have a contradiction. 

Therefore the sequent 'A -3 B b ~B -3 -A* is valid relative to the admis-
sible models for srtict conditional, QEI) 

The fac' 'hat it makes hypothetical syllogism and contraposition valid might 
be seen as an advantage, rather than a disai vantage of the strict conditional. These 
are, after all, common and persuasive forms of reasoning. »'nt since they are ap-
parently invalid for at least some English conditional", their validity for the strict 

conditional is in fact a disadvantage, insofar as the strict conditional is supposed 
to accurately analyze the English. 

i'he disparity beween strict and English conditionals also crops up in "para-
doxes" reminiscent of the paradoxes of material implication. ' liese concern the 
sequents ft I- A -3 B' and ' - O A h A -3 B', both of which are "paradoxically" 
valid. Reacing '-3' as an English conditional, we can produce preposterously in-
valid instances. For example: 

It is necessarily the case that humans are mor al. 
f humans are immortal, then humans are mortal. 

and 

It is impossiMe for Socrate-. to be a rock, 
f Socrates is a rock, then Socrates is a chihuahua. 

n both cases (thinking of the necessity or possibility invoked in the premi e as 
practical rather than, say, logical), the premise is true an the conclusion (under-
stood as an English conditional) is false. Thus it is rash io identify even strict 
con itionah" with their English counterparts. 
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Exercise 12.3 

Prove the following metatheorems for the logic of strict conditionals—whose ad-
missible models are all Kripkean models in which <=/? is reflexive. 

1. The sequent '~A b A -3 B' is invalid. 
2. The sequent ~(A -3 B) (- A &; ~B' is invalid. 
3. The sequent 'oB b A -3 B' is valid. 
4. The s e q u e n t 0 A b A -3 B' is valid. 
5. The formula 'A -3 A' is valid. 
6. The sequent 'A -3 B, A b B' is valid. 
7. The sequent 'A -8 B, ~B (- ~A' is valid. 
8. The sequent 'A -3 B, B -3 C b A -3 C' is valid. 
9. The sequent 'A, B b A -3 B' is invalid. 

10. The sequent 'A, ~B b ~(A -3 B)' is valid. 

12.4 LEWIS CONDITIONALS 

What, then, does the English 'if. . . then' mean? Logicians are divided on this 
question, and it is presumptuous even to assume that English conditionals all mean 
the same thing. But for a good many English conditionals, the best answer I know 
of is this picturesque morsel from David Lewis: 

'If kangaroos had no tails, they would topple over' seems to me to mean 
something like this: In any possible state of affairs in which kangaroos have 
no tails, and which resembles our actual state of affairs as much as kanga-
roos having no tails permits it to, the kangaroos topple over.5 

More generally, we may say: 

I/O then ¥ is true in a world w iff in all the worlds most like w in which O 
is true, is also true. 

Contrast this with similarly stated truth conditions for the strict conditional: 

-3 ¥ is true in a world w iff in all the worlds possible relative to w in 
which O is true, is also true. 

Here, of course, we have to specify the relevant sense of possibility; that is, we 
have to know which form of alethic modality we are dealing with. 

Lewis's truth conditions, however, do not require us to specify the sort of 
possibility we intend. The antecedent of the conditional does that automatically. 
We are to consider, not all practically, or physically, or logically possible worlds, 
but rather all the worlds most like ours in which the antecedent is true. 

5 Counterfactuals (Cambridge: Harvard University Press, 1973), p. 1. The following 
analysis uses the truth conditions given on p. 25, which prevent vacuous truth. 
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As a result, Lewis's truth conditions do not flounder, as those for the strict 
conditional do, when the antecedent is impossible. With the strict conditional, if 
there are no possible worlds in which the antecedent is true, then, trivially, the 
consequent is true in all such worlds—no matter what that consequent may say. 
Thus, as we saw, given that it is impossible for Socrates to be a rock and reading 
'if . . . then' as a strict conditional using the practical sense of possibility, we must 
concede that the absurd sentence 'If Socrates is a rock, then Socrates is a chi-
huahua' is true. 

Lewis's semantics avoids this consequence. Having not found any practically 
possible worlds in which the antecedent is true, we do not simply punt and declare 
the conditional true; rather, rising to the challenge, we consider more and more 
remote possibilities. In our example, since it seems impossible, even in the meta-
physical sense, for Socrates to be a rock, we must extend our consideration all the 
way out to mere logical possibilities before finding worlds in which he is. When 
we come to the first of these (i.e., those most like the actual world—so that, despite 
the fact that in them Socrates is a rock, as much as possible of the rest of the world 
is as it actually is), we stop. Then we ask: Is Socrates a chihuahua in all of these 
worlds? The answer, pretty clearly, is no. And so the sentence 'If Socrates is a rock, 
then Socrates is a chihuahua' is false. 

Though this example is artificial, the general procedure is not. When consid-
ering whether or not a statement of the form if O then is true, we do in fact 
imagine things rearranged so that 0 is true and then try to determine whether 
under these new conditions would also be true. But we do this conservatively, 
excluding ways of making O true that are wilder than necessary. That is, we try to 
keep as much as possible of our world unchanged. Most of us would assent to the 
conditional 'if kangaroos had no tails, they would topple over', even though we 
can envision worlds in which kangaroos have no tails but do not topple over 
because, for example, there is no gravity. But the conditional asks us only to 
entertain the possibility of depriving kangaroos of tails. Depriving them of gravity 
too is impertinent; it changes the world in ways not called for by the conditional's 
antecedent. Hence, depriving kangaroos of gravity is not relevant to determining 
the truth value of the conditional. 

Yet there may be more than one equally conservative way of changing the 
world to make the antecedent true. Consider the conditional 'if forests were not 
green, then they would not be so beautiful.' Now there are many worlds equally 
minimally different from ours in which the antecedent is true: worlds in which 
forests are brown or blue or yellow, and so on. Only if we regarded the consequent 
as true in all of these worlds would we assent to the conditional. If we regarded 
brown forests, but not blue, as more beautiful than green, we would judge the 
conditional false. That's why Lewis stipulates that //<D then is true iff among all 
the worlds (plural) most like w in which O is true, is also true. 

The one element required by Lewis's semantics that has not appeared in any 
model we have considered so far is a measure of "closeness" or similarity among 
worlds. While Lewis uses these terms, I prefer to think in terms of degree of 
possibility; where Lewis would speak of worlds as being more or less similar to a 
given world, I regard them as being more or less possible relative to that world. 
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There are two reasons for this. First, it allows us to make the transition to Lewis's 
semantics without introducing the entirely new concept of similarity; the only 
change we need make is to think of <=$ as having degrees, rather than being an all-
or-nothing affair. Second, similarity is symmetric; A is precisely as similar to B as 
B is to A. But, as we have seen, should not, in general, be assumed to be 
symmetric. 

How might a model treat <=R as a matter of degree? The simplest way would 
be to set up some arbitrary scale (say, from 0 to 1), where 0 represents complete 
lack of relative possibility and 1 the highest degree of relative possibility. Presum-
ably, then, each world is maximally possible relative to itself, that is, has degree 1 
of J ? to itself, and all other worlds are less possible relative to it. 

Such a numerical scale is, however, not quite satisfactory. There is no a priori 
reason to suppose that degrees of relative possibility can be ordered like the real 
numbers from 0 to 1. A more abstract mathematical treatment of order could 
address this problem but would introduce complexities beyond the scope of this 
book. We shall, then, at the risk of slight (and not very significant) oversimplifica-
tion, suppose degrees of <=/? can be ranked along a 0 to 1 scale. 

Accordingly, instead of treating <=/? as a set of pairs, as we did before, we may 
treat it as a set of triples, in which the third member is a number from 0 to 1, 
indicating the degree to which the second member is possible relative to the third. 
Thus for a model consisting of worlds 1 and 2, we might have, for example: 

{<1, 1, 1>, <1, 2, 0.7>, <2,1, 0>, <2, 2,1>} 

This means that worlds 1 and 2 are each fully possible relative to themselves, 
world 2 is possible relative to world 1 with a degree of 0.7, and world 1 is not at 
all possible relative to world 2. Rather than writing this all out in English, let's use 
the notation <=/?(l, 2) = 0.7 to mean that the degree to which world 2 is possible 
relative to world 1 is 0.7. We shall stipulate that 

(1) each pair of worlds in the model must be assigned a number from 0 to 1 

and that 

(2) no pair of worlds may be assigned more than one number 

so that for any worlds x and y in the model, y) will exist and will be unique. 
(Where in a Kripkean model we would say that it is not the case that XcRy, now 
we shall say y) = 0.) We further stipulate that 

(3) for any worlds x and y, y) = 1 iff x = y. 

This implies that no world is as possible relative to a world x a s x itself is. A Lewis 
model, then, will be exactly like a Kripkean model except for these differences 
in <=/?. 

Lewis represents his conditional formally as the binary operator and 
we shall do likewise. But we shall differ from Lewis in reading this operator simply 
as "if . . . then." Lewis reads O •—»• as "if <E> were the case, would be the case," 
confining his analysis to so-called subjunctive or counterfactual conditionals. But 
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1 am persuaded that this analysis is more broadly applicable.6 Its formal truth 
clause is as follows: 

•—> T iff there is some world u such that T (<£>, u) = 'i, and there 
is no world z such that J?{ws z) > w), T ( 0 , z) = T, and Y(VK, z) * T. 

This is just a transcription in our new terminology of the informal truth conditions 
given above. The world u is some arbitrary one of the worlds most possible relative 
'o the actual world in which the antecedent (t> is true. We are saying, in other 
words, that <i> •—> is true at w iff 

1. <f> is true in some world u, which is such that 
2. there is no world at least as possible relative to iv as u is in which is 

true and is not. 

Clause 2 implies 'hat SK is true in u, as well as in any worlds more possible relative 
to w in which <!-> is true, 'utting both clauses together, .his is to say that in all the 
worlds most possible relative to w in which <2> is true, T is also true. The corre-
sponding falsity clause is 

Y(® w) = F iff for all worlds u such that u) = T there is some 
world z such that z) > J?(w, «), Y(<J>, z) = T, and z) * T. 

Tf we \ *ish to retain the operators ' 0 ' and '•', we can do so in the Kripkean 
fashion, by stipulating that for any worlds x and y, x<=f?y iff <J?[x, y) & 0. T.iat is, y 
counts as accessible from x if and only if y is accessible to even the slightest degree 
from x. This allows the stanJard Kripkean clauses to be used for these operators. 

We shall illustrate the use of Lewis semantics first by proving that modus 
ponens is valiu for a Lewis conditional: 

METAt HEORJbM: The sequent lA B, A 1- B' is valid for Lewis 
models. 

wOOFt Assume for reductto thai this sequent is invalid; rhar is, there 
is a l-ewis modei containing a world to such that V(*A B', 
w) = T, A5, w) - T , and T( ' B\ w) NO» by the definition 
of a Lewis model, for any v. orld u, j?(uk w) > J?[w, a). Hence 
for all worlds u, there is some world z. namely it\ such that 

z) ^ Y(*A\ z) ~ T, and V(*B\ z) * I. Hence, in 
particular for all worlds u such that V('A\ u) - T, there is some 
world z such thai z) > ^w u), Y{*A\ Z) = T, and % (VB\ 
c) * X Bur this is ro say tliat T{*A •—> B\ w) * T, and so we 
have a contradiction. 

I ence the sequent 'A B, A h B* is valid for Lewis models. QM > 

6 See Michael Kroner, " ' I f Is Unambiguous," Rous 21 (1987): 199-217, for a 
fuller discussion of this point. 
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It turns out, however, that contraposition and hypothetical syllogism, which 
we saw were invalid for English conditionals, are both also invalid for ,ewis's 
conditionals. We shall prove this for contraposition., leaving hypothe ical syllogism 
as an exercise. To set the stage, consider the invalid instance of contraposition 
mentioned above: 

If the Atlantic is an ocean, then it's a polluted ocean. 
If the Atlantic is not a polluted ocean, then it's not an ocean. 

According to Lewis, we evaluate a conditional by considering the worlds 
most similar to (or, in my terms, most possible relative to) the actual world in 
which the antecedent is true. In the case of this argument's premise, there is only 
one such world—the actual world itself—for the Atlantic is in fact an ocean. 
We now check to see if the consequent is ..rue among all members of this (one-
membered) class of worlds. And indeed it is, ^or the At'antic is a polluted ocean. 
Therefore the premise is true in the actual world. 

We then subject the conclusion to the same procedure. The conclusion's 
antecec ent is not true in the actual world, so we must move in imagination out to 
those worlds most like the actual world (or most possible relative to the actual 
world) in which .he Atlantic is pristine. Presumably, there are many ap/>ro imately 
equally possible ways in which this could have happened. The Industrial Revolu-
tion might never have occurred; or we might have developed an ecological con-
science before it did; or we might have developed technology for -learing up 
oceans.' he details matter little; for, whatever we imagine here, it will not include 
the Atlantic' being iransmuted into something other than an ocean, 'ha possi-
bility is much wilder than these others. It seems not even to be a meta hysical 
possibility, bir merely a logical one. The others are all physical, if not prac ical, 
possibilities. In none of these more "homey" possibilities is the Atlantic no: an 
ocean. Therefore the conditional's consequent is false in all the worlds most like 
the actual work', in which its antecedent is true, .'.nd so the conditional is false. 

We can model this counterexample with a domain of two worlds: world 1, 
representing the actual world, and world 2, representing one of the "homey" 
worlds in which the Atlantic is pristine but remains an ocean. Read \.V as "the 
\tlantic is an ocean" and 'B' as "the dantic is a pollatec ocean": 

METATHEOREM: The sequent4A a—• B !- ~B • — - A ' is invalid for 
Lewis models. 

PROOF: Con sulci the model * defined as follows-. 

</?-{<!, 1, f>, <1 ,2 ,0 .7>, <2, ,0.5>, 
<2. 2, !>} 

1TA\ 1 ) = T 
n i B \ .1} = 

V(«A\2)=T 
r ( t B ' , 2 ) - - F 

This meets conditions 1 -3 and sc is a Lewis model, C te&rly here is no 
world z such that <#{ 1, z) > , i), V('A\ z) = T, and V( ' '>\ z) *T. .•kit 
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1 {'A', 1) = T. Herce "here is a world n, namely world 1, such thatTCA', 
u) = T and there is no world z such that <=/?{!, z) £ <=V{1, w), Y(Yi, z) -
T. and V(4B\ z) * T. "t herefore T f A •—• B\ J) - X Now there is only 
one world u such thai T('~B\ u) - i: This is world 1. Yet .=/?{], 2) £ 

2)> Y('~B\ 2} = T, and T('~A\ 2) * T. Thus for all worlds u such 
that Tf'-B7 , it) — T, there is some world z, namely world 2, such that 
<*>(} ,z) t , rC-B' , z) = T, and y('~A\ z) * T. But this is to say 
that V(*~B •—> -A', 1) = F. Thus since, as we saw above, Y('A Q-+ 
B', I) = T, it follows that tiie sequent £A •—» 3 (- ~B D~> ~A' is 
invalid. QH1) 

Further investigation of Lewis's semantics reveals many more respects in 
hich his conditionals fit our intuitions about English conditionals (see the exer-

cise below). Of the conditionals we have examined, Lewis's is surely the bes: 
approximation to the English. But whether it is uniquely correct as a formal se-
mantics for the English conditional remains a disputed question. 

Exercise 12.4 

Prove the following metatheorems for 'D-+' using .ewis models. 

1. The sequent 'A •—• B, ~B b ~A' is valid. 
2. The sequent 'A •—• B, B •—»• C b A C is invalid. 
3. The sequent C~A b A Q-> B' is invalid. 
4. The sequent 'B b A •—> B' is invalid. 
5. The sequent C~(A •—• B) b A &: ~B' is invalid. 
6. The sequent 'A, B b A •—• B' is valid. 
7. The sequent 'A, ~B b ~(A •—• B)' is valid. 
8. The sequent' V •—>• C b (A & B)n—• C' is invalid. 
9. The sequent 'oB b A B' is invalid. 

10. The sequent ' - O A b A •—•• B' is invalid. 


