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test's loading onto the general intelligence (g) factor. Initially, a correlated vector (CV) ap
was used to examine SH, where the results typically confirmed that the magnitude of g lo
were positively correlatedwith the size ofmean group differences in the observed test scor
CV approach has been heavily criticized by scholars who have argued that a more precise m
for examining SH can be better investigated using a multi-group confirmatory factor a
(MG-CFA). Studies of SH using MG-CFA have been much more equivocal, with results not
confirming nor disconfirming SH.
In the current study, we argue that a better method for extracting g in both the CV and M
approaches is to use a bi-factor model. Because non-g factors extracted from a bi-factor ap
are independent of g, the bi-factor model allows for a robust examination of the influence o
non-g factors on group differences on mental test scores. Using co-normed standardizatio
from the Wechsler Adult Intelligence Scale-Fourth Edition and the Wechsler Memory
Fourth Edition, we examined SHusing both CV andMG-CFA procedures.We found support
weak form of SH in both methods, which suggests that both g and non-g factors were invo
the observed mean score differences between Black and White adults.
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Differences between racial, ethnic, and socioeco
groups in mean scores on general cognitive ability tes
well-established (Gottfredson, 2005; Rushton & Jensen, 2
The magnitude of these differences, however, varies
function of the type of cognitive skills being measured
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explain these patterns in the magnitude of group perform
differences range from non-empirical speculations to
grounded in theory and appropriate empirical procedur
testing hypotheses.

1.1. Speculative Explanations

Speculative explanations simply proffer plausible, b
hoc, rationales for why a particular group obtains lower
scores than another group. These explanations are not tie
coherent, data-based theory. As one example, “cultural
ences” is often evoked as a global, all-purpose explanati
differing performance patterns among population subg
This global explanation typically takes two forms. Som
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argue that some subgroups, partly due to economic and social
disadvantages/differences from the more affluent mainstream,
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are simply not exposed to certain academic stimuli as
casewithmore advantaged subgroups (Eells, 1951; Lupi
Woo, 1989;White, 1984), and thereby lower scores are du
presumed lack of exposure to tasks such as those fou
cognitive tests (see specificity doctrine; Jensen, 1984). O
may argue that examinees from different racial/cultural g
display different “culturally idiosyncratic” psychological a
stylistic patterns for interacting with test material, th
depressing scores (see Helms, 1992, 1997).

Speculative explanations suffer from two major flaw
and fundamentally, findings are explained only after th
observed. Testable hypotheses are not stated first befor
data has been collected, which would allow for a reject
the hypotheses based on patterns shown by the data. Se
these ad hoc explanations are infinitely malleable, ad
indiscriminately to the idiosyncratic characteristics o
items. As examples, Helms (1997) hypothesized that
examineesmay fail theWechsler Intelligence Scales Arith
items because of substandard training in school, ma
Comprehension itemsdue to “exposure to racism”, andm
Digit Symbol items because they are “uncomfortable
pencils as a tool” (p. 522).

1.2. Theory-based explanations: Spearman's hypothesis
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Charles Spearman (1927) initially observed that
differences should be “most marked in just those
which are known to be saturated with g [general intellig
(p. 379). Jensen (1980) later named this Spearman's hypo
(SH). There are three levels of SH that Jensen (1998,
called the strong form, weak form, and the contra hypo
The strong form posits that any observed race differen
test's mean scores are solely a function of g. The weak
posits thatwhile race differences in test scoremeans arem
a function of g, lower-order factors or subtest specificitie
contribute to the difference. The contra hypothesis hold
observed mean score differences are independent of g,
solely a function of lower-order factors or test specificity

Support for SH has been borne out from num
independent studies based on large child and adult sa
(e.g., Jensen, 1985, 1998) and comprising many dif
psychometric tests, such as the Armed Forces Qualifi
Test (Nyborg & Jensen, 2000), the Kaufman Assessment B
for Children (Naglieri & Jensen, 1987), the Wechsler I
gence Scale for Children-Revised (Jensen & Reynolds,
Naglieri & Jensen, 1987; Rushton & Jensen, 2003), and te
college/graduate school admissions, job selection, an
military (Roth, Bevier, Bobko, Switzer, & Tyler, 2001).

There has been some disagreement about interpretin
SH literature. Schönemann (1997) interpreted the literat
being supportive of the weak form of SH. In contrast, Ru
(2003) concluded that most studies supported the strong
of SH.1 Summarizing his own work from 17 independen
urface
verbal
arison

1 Rushton (1998) proposed that the term Jensen Effect be used wheneve
there is a substantial correlation between g loadings and any other variable.
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(2001) found that the correlation between Black–
differences and g was between .57 and .62. More rec
Dragt (2010) performed a meta-analysis of SH studie
found an average correlation of .85 between g and mean
test score differences between Black and White respond

1.2.1. Interpretation of Spearman's hypothesis using tests ofm
While Jensen's (Jensen & Figueroa, 1975; Jensen & Os

1979) initial interest in SH began with tests of memory
work has been done examining Black–White differen
memory measures. What has been done is mostly inci
(i.e., one or two memory subtests in an intelligenc
battery), but it tends to indicate both that memory task
smaller g loadings than other tasks on multi-test cog
batteries and that Black–White differences in mean scor
either considerably reduced on such tests (Jensen, 1980,
or that average score for the Black sample is higher tha
average for the White sample (Jensen & Reynolds, 1982
example, in one of the few studies that examined Black–
differences in a battery ofmemory tests, Mayfield and Rey
(1997) found a consistent factor structure across both g
The Black sample scored higher than theWhite sample on
of the memory tests, although the difference was small.

1.3. Empirical challenges to interpretations of Spear
hypothesis (SH)

Helms-Lorenz, Van de Vijver, and Poortinga (2003)
argued that the constructs of cognitive complexity and v
cultural loading are confounded in attempts to properly int
results from tests of SH. They administered two intell
batteries and a computer-assisted elementary cognitiv
battery to a large group of Dutch and second-generationm
6–12 year old children living in the Netherlands. In addit
using factor analysis to compute the subtests' g loadings
gave all subtests two ordinal ratings of “cognitive compl
One cognitive complexity rating was based on both Ca
(1993) cognitive abilitiesmodelwhile the other correspon
the minimal developmental level needed for successful a
plishment (Fischer, 1980). The cultural loadingof subtest co
was rated on an ordinal scale by psychology student
another rating of each subtest's verbal loading was opera
ized as the number of words in the subtest. The authors
that the size of group differences on the intelligence tes
better predicted by the “cultural” variables than by the cog
complexity variables.

Although Helms-Lorenz et al. (2003) used an intr
methodology for investigating the relationship between f
analytically derived subtest g loadings and human rati
subtest task characteristics, there are a number of unre
issues that challenge their conclusions. The first pr
concerns confusion in what Jensen (1998) called the “ve
of g” versus the g construct itself (Jensen, 1998, p. 309
example, cultural differenceswould not explainwhy a Fo
Digit Span Task and a Backward Digit Span Task would
widely discrepant g loadings, despite similarities in the s
characteristics of these tests (particularly in their non
content). In addition, the composition of the comp

r



groups that Helms-Lorenz et al. used may play a role in their
findings. Jensen (1998) wrote:
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Each test score reflects both the level of g and the prop
of the vehicle of g (the latter being largely unrelated
One would predict, for example, that the g factor, wh
highly and equally loaded in batteries of verba
nonverbal tests when given tomonolingual children, w
have much smaller g loadings on the verbal tests (gi
English) than on the nonverbal tests when that batt
given to bilingual children. For the bilingual grou
verbal tests would reflect the degree of second-lan
acquisition more than they would reflect g (p. 310).

Although the groups studied in the Helms-Lorenz
(2003) research are reported to have been exposed to the
number of (age appropriate) years of Dutch education
also state “there is evidence that substantial differen
knowledge of the Dutch lexicon between the majority-
pupils and migrant pupils remain throughout the pr
school period, even for second-generation children” (pp
15). In the majority of studies that have evaluated SH
comparison groups are comprised of native-born partic
(e.g., American blacks and whites). In these studie
comparison groups are more “culturally homogeneous”
those in the Helms-Lorenz et al. (2003) study wher
migrant students' parents were born in at least five dif
countries.

1.4. Methods used to test for Spearman's hypothesis

There are two common methods currently employ
assess SH: correlated vector (CV) analysis, and multi-
confirmatory factor analysis (MG-CFA).

1.4.1. Correlated vector method
A correlated vector (CV) analysis attempts to e

variability in the magnitude of group differences on v
tests (or subtests) by correlating the g loading of the test
the size of group differences inmean scores on the same t
CV analysis typically involves the following steps: (a) co
an exploratory factor analysis (EFA) of the tests in repre
tive samples of the different comparison groups, separ
(b) estimate the similarity (i.e., congruence) of the
loadings between groups; (c) if the factors are similar
conduct the EFA in the combined sample; (d) correct each
g loading for unreliability; (e) standardize the differen
mean scores between the groups; (f) correct each standa
group difference for unreliability; and (g) calculat
correlation (either Pearson or Spearman) between
corrected standardized group differences and the corre
loadings (Jensen, 1985, 1992, 1998). A positive corre
indicates that tests with higher g loadings have larger
differences in mean test scores. There is no agreed
correlation value that differentiates the strong and
forms of SH, however, hence support for g's role in determ
group differences can vary greatly between studies (D
Roorda, & Wicherts, 2004).

1.4.1.1. Criticisms of the correlated vector method. Scholar
leveled a number of criticisms against the use of a CV anal
s
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g loadings are heavily influenced by the nature of the
subtests included in the battery (see Jensen & Weng, 1
hence comparing CV studies that have used different i
ments to evaluate g may be problematic. Dolan and Ha
(2001) argued that the CV procedure does not adequately
model fit, thus the factor model used to obtain g loading
not be the best way to explain the tests' covariances.
(2000) opined that making a persuasive argument for g
main contributor to any group differences requires com
competing models, with the models ascribing a central ro
fitting the data better than themodels that do not ascribe
role to g.

From a somewhat different perspective, Dolan an
leagues (Dolan, 2000; Dolan & Hamaker, 2001; Dolan & L
2001; Lubke, Dolan, & Kelderman, 2001) argued tha
correlations obtained in a CV analysis are difficult to int
with any degree of specificity, as the method assumes th
tests are at least strongly invariant across the comp
groups. Strong invariance signifies that any observed
differences in mean test scores are due to group differen
the constructs that the tests are measuring, not differen
how the test measures the construct across groups (i.e
bias). Thus, if the invariance assumption cannot be establ
then between-group differences may be attributable, at le
part, to differences in how the tests measure their int
constructs. Even if invariance holds across groups, whe
tests measure multiple factors (e.g., Wechsler scales
analysis could mask group differences in lower-
domain-specific latent variables by implying that the
ences are only due to g.

1.4.2. Multi-group confirmatory factor analysis method
The multi-group confirmatory factor analysis (MG

procedure for assessing group differences involves conduc
confirmatory factor analyses (CFAs) simultaneously on se
data from two or more comparison groups (Harrington,
MG-CFA is a well established method for investigating
differences in the latent means and (co)variances esti
from a latent variablemodel (Millsap, 2011). Moreover, M
has a number of advantages over a CV analysis for testi
(Dolan, 2000; Gustafsson, 1992; Horn, 1997; Millsap, 1997

First, MG-CFA allows for a more integrated and e
investigation of the various steps involved in the CV an
Specifically, MG-CFA requires fitting a single latent va
model in all groups simultaneously using the group-sp
data. Then, in a systematic fashion the model paramete
constrained to be the same across groups, starting wi
factor structure (configural invariance), then the loadings
invariance), and then the intercepts (strong invariance).
(e.g., Lubke, Dolan, Kelderman, & Mellenbergh, 2003)
advocated a need for assessing the equality of the re
variances, too (strict invariance), but there is no uni
agreement on this (Little, Card, Slegers, & Ledford, 2007)
loadings and intercepts (i.e., the predicted mean o
observed test for a given level of the latent variable) a
same across groups, then the between-group differences
measured test scores are only due to between-group
ences in the latent means, as opposed to measuremen
playing a role in the observed differences. If the re



variances are invariant as well, then the reliability with which
the test scores measure the latent variables is the same across
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argue that the CV approach is better for examining SH—at
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groups (Raykov, 2004).
Second, the hypothesis of strong factorial invaria

necessity formeaningful interpretation of group differenc
tested explicitly in MG-CFA. The CV method assumes
invariance, but only assesses for weak invariance via lo
congruence; moreover, this assessment is done in an a
fashion.

Third, MG-CFA can compare models that have dif
constraints on the model parameter between groups and
use measures to compare how the models fit the data.
context of SH, this can be advantageous for testingmode
include g in a central role in explaining group differ
against competing models in which g does not play a c
role in explaining group differences.

1.5. Using multi-group confirmatory factor analysis to ex
Spearman's hypothesis

Some investigations of SH have usedMG-CFA. Dolan (
applied MG-CFA to standardization data for the We
Intelligence Scale for Children-Revised (WISC-R), which J
and Reynolds (1982) previously analyzed using th
approach. Dolan found support for strict invariance be
Black andWhite groups, lending support to the notion th
WISC-R's subtest scores reflected unbiasedmeasurement
were equivocal about the prominence of g causing the
differences, however, because the first- and higher-order
models that they used to represent the different forms of
the data similarly.

Dolan and Hamaker (2001) used MG-CFA to re-an
Naglieri and Jensen's (1987)WISC-R and Kaufman Asses
Battery for Children (K-ABC) data. Like Dolan (2000)
found support for strict factorial invariance between Blac
White groups. Also like Dolan, they fit multiple first
higher-order factor models to represent the different for
SH and could not determine what one fit the data best.
they were equivocal about g's influence on the observed
differences in the test scores. Although Naglieri and J
found a CV-based correlation of .75 between g an
magnitude of Black–White differences, Dolan and Ha
concluded that the “repeated demonstration of a positiv
large Spearman correlation is a necessary, but not a suf
condition for inferring the correctness of Spearman's hy
esis” (p. 33).

Not all MG-CFA studies of SH have found suppo
invariance. For example, Dolan et al. (2004) reanalyzed
from two SH studies (Lynn & Owen, 1994; te Nijenhuis
der Flier, 1997) that used the CV approach. For both da
Dolan et al. did not find evidence for strong invarianc
concluded that no form of SH could be inferred from
dataset.

Despite the advantages of theMG-CFAmethod, thism
also has critics. For example, Woodley, te Nijenhuis, Mus
Must (2014) argued that MG-CFA requires large datas
studies of SH that used small datasets “simply cann
analyzed, hence the information contained in them is lo
the purposes of accumulation” (p. 30). Second, MG-CFA c
be used for a meta-analysis of SH because most studies d
report sufficient information (i.e., within-group m
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studies.

1.6. Factor models used to test Spearman's hypothesis

Studies that have examined SH fall into two groups:
that use a MG-CFA approach and those that use a CV app
The MG-CFA studies all used a higher-order factor mo
represent g. Studies that used CV measured g in a vari
ways, ranging from the first component of a pri
components analysis, to the first unrotated factor fro
EFA, to the general factor extracted from Schmid and Lei
(1957) orthogonal transformation. We contend that no
these are the optimal way tomodel g for an investigation

1.6.1. Higher-order factor models
To explain factor models, we use Carroll's (1993,

strata terminology and conceptualization. At Stratum
narrow factors, which influence a homogenous gro
intellectual tasks. There are many factors at Stratum I,
examples of which are Inductive Reasoning, Lexical K
edge, and Working Memory. At Stratum II are approxim
10 broad factors, which influence a wider range of intell
tasks than Stratum I factors. Some examples of Strat
factors are Fluid Reasoning and Comprehension Knowled
Stratum III is the single g factor, which influences a g
range and diversity of intellectual tasks than any other fa

The difference between the strata is breadth of conten
is because the presence of factors at a given strata depen
the data being analyzed. If the variables are sufficiently d
then gwill likely be present; with datasets containing var
with homogenous content (e.g., alternate forms of a
test), typically only Stratum I factors are present. Fo
current study, we only focus on Stratum II and Strat
because factors derived from individually-administered t
cognitive ability can typically be classified at one of those
(Carroll, 1995).

To date, the studies that have examined SHusing theM
approach have all used a higher-order factor (HOF)
(Dolan, 2000; Dolan & Hamaker, 2001; Dolan et al., 2004;
et al., 2001). HOF models of cognitive ability define g as a
Stratum III (second-order) factor that explains all the com
variance among the Stratum II (first-order) factors (see Fi
The observed test scores have three direct influences: Stra
factors, test-specific factors, and measurement error. The
specific factors typically cannot be distinguished from me
ment error, so they are amalgamated into a single residua
that is uncorrelated with all other factors.

In HOF models, g directly influences all the Stratum II f
To the extent that g is highly correlated with a Stratum II
higher levels of g produce higher levels of the Stratum II fa
does not directly influence the observed test scores. Inste
influence on the tests is mediated by the Stratum II factor

Stratum II factors can be decomposed into two compo
in HOFmodels: the part due to g and the part independen
The part that is independent of g is the Stratum II-s
factor, which explains individual differences in the abilit
the Stratum II factor represents beyondwhat g can explai
the test-specific factors, the Stratum II-specific facto



(a) Higher-order factor model. a is a second-order (Stratum III) factor loading; b, c, and d are first-
order (Stratum II) factor loadings; and e is Fluid Reasoning's Stratum II-specific variance.

(b) Bi-factor model.

Fig. 1. Intelligence factor models. Test-specific/error variances are not shown for space considerations.While themeaning of the Stratum II factors changes fromModel
1a to Model 1b, we have kept the names the same to aid in comparing the two models.
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residuals and are typically uncorrelatedwith all other variables.
The total variance of a Stratum II factor, then, is an amalgam of
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the variance attributable to g and that attributable to St
II-specific factors.

1.6.1.1. Problematic issues associated with higher-order
models. There are multiple drawbacks of HOF factor m
when studying a multidimensional trait such as intelli
(Chen, Hayes, Carver, Laurenceau, & Zhang, 2012; G
2007). In these models, g does not directly influence th
scores. Thus, its influence on the test scores is limited b
well the test scores measure the Stratum II factors. F
illustrates this principle. The relationship between g and V
be calculated using the tracing rules for a path model (Lo
2004). Specifically, the relationship is calculated bymulti
V1's loading on Fluid Reasoning by Fluid Reasoning's load
g (i.e., b × a). If b = .30 and a = .50, then the magnitude
relationship toV1 is .30× .50= .15. If b increases to .65, th
relationship with V1 increases to .65 × .50 = .33.

Another drawback of HOF models is that they im
proportionality constraints (Yung, Thissen, & McLeod, 1
Specifically, for a given set of tests influenced by the
Stratum II factor, the ratio of the test scores' variance due
Stratum II factor to the variance attributable to g is const
to be the same.

Proportionality constraints can be a challenge to u
stand clearly, so we follow Beaujean, Parkin, and Pa
(2014) explanation using Fig. 1a. We previously showed
to calculate the relationship between g and V1 using t
rules. We can use the same tracing rules to compu
influence of Fluid Reasoning's Stratum II-specific factor
Specifically, multiply V1's loading on Fluid Reasoning b
standard deviation of Fluid Reasoning's Stratum II-s
factor (e.g., b� ffiffiffi

e
p

). The ratio of g's indirect influence on
the influence of Fluid Reasoning's Stratum II-specific fac
V1 is exactly the same for the other observed test score
Fluid Reasoning influences: V2, and V3. Specifically,

b� a
b� ffiffiffi

e
p ¼ c� a

c� ffiffiffi
e

p ¼ d� a
d� ffiffiffi

e
p

These forced proportional loading patterns can be
lematic. First, the constraints cause multicollinearity pro
when using both g and Stratum II factors as predictor var
(Beaujean et al., 2014). Second, it is unlikely that
constraints occur in a population (Schmiedek & Li, 2
Although some have empirically assessed the tenabi
proportionality constraints and not found them proble
(e.g., Dolan & Hamaker, 2001), Mulaik and Quartetti (
argued that the sample sizes needed for such investigatio
much larger than what is typically used in SH investiga
Third, proportionality constraints confound g and Stra
factors in HOF models because the second-order
structure is just a re-expression of the Stratum II f
correlations (Reise, 2012). A combination of the last two
could possibly explain why previous SH studies
equivalent fit between HOF models and oblique first
models, and, subsequently, could not determine if
differences were due to g or Stratum II factors.

These criticisms apply just as well to any transformat
HOF model such as the one developed by Schmid and L
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does not release the proportionality constraints. It is
through a bi-factor model that the Stratum II factors
straints on g are released.

1.6.2. Schmid–Leiman transformation (SLT)
Schmid and Leiman (1957) developed a matrix tra

mation that some use with higher-ordermodels to calcul
the direct and indirect influences on the indicator var
simultaneously (Reynolds & Keith, 2013). Another use
Schmid–Leiman transformation (SLT) is to combine the r
from an EFA on observed test scores (i.e., first-order EFA
have oblique (correlated) factors and an EFA of the corr
factors (i.e., second-order EFA; Gorsuch, 1983). In eithe
the SLT produces g loadings for the observed test scores v
technique discussed in Section 1.6.1.1.

In the SLT, the common variance among all the test sc
represented as a general factor, while narrower domai
represented as residual Stratum II factors. Consequentl
Stratum II factors are orthogonal to each other as well as
general factor. Thus, Stratum II factors from a SLT do no
the same interpretation as those from a Stratum II EFA w
oblique rotation. In the oblique rotation, the Stratum II f
reflect variance from both g and the Stratum II factors, wh
in the SLT the Stratum II factors only reflect variance
Stratum II factor level that is unexplained by g (Reise, 2
Despite the differences in factor construction, the conv
has been to call Stratum II factors by the same name rega
of how they were formed (e.g., Carroll, 1996).

1.6.2.1. Problems with the Schmid–Leiman transformation.
are two major problems with the SLT. First, the direct
loadings produced by the SLT are merely a re-expression
correlations among the Stratum II factors. Thus, the
loadings of an EFA with correlated Stratum II factors and
of the EFA's factor loading are equivalent (Schmid, 1957
same can also be said for the loadings from a higher-ord
and a SLT of those loadings (Yung et al., 1999). Consequent
SLT does not do away with the proportionality constrain
HOF model and imposes the constraints on the second
EFA.

A second major problem of the SLT occurs when the
cross-loadings (i.e., some of the observed tests load onto
than one Stratum II factor), which are not uncommon
individually-administered intelligence tests (Weiss, Keith
& Chen, 2013a, 2013b). In such situations, the SLT
overestimate the g loadings and underestimate the Stra
factor loadings (Reise, Moore, & Haviland, 2010).
Stratum II cross-loadings produce larger amounts of the
or underestimation (Reise, 2012).

1.6.3. Bi-factor models
The bi-factor model (Holzinger & Swineford, 1937),

times called a direct hierarchical or nested-factorsmodel,
an alternative to both theHOF in theMG-CFA approach a
second-order EFA in the CV approach.2

2 Technically, the bi-factor model is a generalization of the HOF
(Gignac, 2008; Yung et al., 1999), but we consider them as two distinct



1.6.3.1. Bi-factor model for confirmatory factor analysis. An
example of a bi-factor (BF) model is shown in Fig. 1b. In this
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model, all factors have a direct influence on the
Consequently, higher levels of g and higher levels o
Stratum II factors are both directly associated with h
scores on all the tests (assuming positive loadings)
difference between g and Stratum II factors is that whi
thought to influence every test, the Stratum II factors
influence a subset of the tests. Test-specific factor
measurement error also influence the tests in the BF m
As with the HOF model, the test-specific factors' influe
typically indistinguishable from influence due tomeasure
error so they are represented as a single residual term t
uncorrelated with any other factor.

BF models have advantages over the HOF (Chen, W
Sousa, 2006). First, unlike the HOF, the BF model form
Stratum II factors from the covariance remaining
accounting for g, making the Stratum II factors indepe
of g (i.e., are all uncorrelated). Thus, the BF model prod
direct estimation of the relationship between the obs
tests scores and Stratum II-specific factors. Second, t
model allows the tests' factor loadings on both g an
Stratum II factors to be estimated without any proportio
constraints.

A third advantage of the BF model is that is allows for
assessment of measurement invariance in both g an
Stratum II factors. InHOFmodels, non-invariance of a Stra
factor would automatically produce non-invariance
Fourth, the BG model allows for a direct comparison of
differences between groups on Stratum II factors indepe
of g. These last two advantages are particularly salient
examining SH. If there is at least strong invariance in g an
Stratum II factors, then the BF model allows for a simulta
investigation of the strong, weak, and contra forms of SH

Specifically, support for the strong form of SH would
from there being no differences in the latent mean
Stratum II factors, but there being a difference in the
mean of g. Conversely, support for the contra hypothesis w
come from there being differences in the latent mean
Stratum II factors but no difference in the latent mean o
there were differences in the latent means of both g an
Stratum II factors, then this would provide evidence
weak form of SH.
1.6.3.2. Bi-factor rotations for exploratory factor analysis. Recent
ly, two bi-factor methods have been developed for EFA. Th
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first is bi-factor target rotations (Reise, Moore, & Ma
Olivares, 2011). The basic idea is to extract factors as usua
EFA, specify a factor pattern matrix to use for factor rot
and then rotate the factors to minimize the difference be
the estimated factor loadings and the specified elements
target factor loadings. For more information on target rot
see Browne (2001).

The second BF method for EFA is an analytic ro
(Jennrich & Bentler, 2011, 2012). Here EFA is done as
only the factors are rotated such that all the tests load o
first factor and the remaining factors are rotated in such
to encourage perfect cluster structure (i.e., the tests
substantial loadings on only one factor). The first factor
general factor and is uncorrelated with the other factor
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1.7. Purpose of the current study

The purpose of the current investigation is to test SH
BFmodels and both CV andMG-CFA approaches. To do th
used Black and White adults' scores from the co-no
Wechsler Adult Intelligence Scale-Fourth Edition (Wec
2008a) andWechsler Memory Scale-Fourth Edition (Wec
2009) standardization data.

Based on our review of the SH literature, we expect t
support for the weak form of SH in this dataset. The rea
that the dataset contains tests that have both high and
loadings and oversamples tests of memory. Thus,
differences in the test scores are likely due to group differ
in both g and Stratum II factors. If our hypothesis is corre
CV analysis will produce a moderately sized positive co
tion between the tests' g loadings and the size of Black–
test score differences. In the MG-CFA analysis, support f
weak form of SH would come from mean difference
favoring theWhite sample, but small or no group differen
non-memory Stratum II factors. Mean differences on
memory factors should either show no Black–White diffe
or, if a difference exists, favoring the Black sampl
suggested from previous research).

2. Method

2.1. Materials

2.1.1. Wechsler Adult Intelligence Scale-Fourth Edition
The Wechsler Adult Intelligence Scale-Fourth E

(WAIS-IV; Wechsler, 2008a) is an individually admini
battery designed to assess cognitive ability in indiv
between the ages of 16–90 years. The WAIS-IV consists
primary subtests (Vocabulary, Information, Similarities
Span, Arithmetic, Block Design, Matrix Reasoning,
Puzzles, Coding, and Symbol Search). The primary su
yield four Index scores (Verbal Comprehension, Perc
Reasoning, Working Memory, and Processing Speed) a
overall Full-Scale IQ. The average internal consistency re
ity of WAIS-IV subtests ranged from .78 for to .94 (Wec
2008b).

2.1.2. Wechsler Memory Scale-Fourth Edition
The Wechsler Memory Scale-Fourth Edition (WM

Wechsler, 2009) is an individually administered b
designed to assess a variety of memory abilities, su
working memory, learning, immediate and delayed reca
recognition of information. There are both verbal and
tasks are presented in verbal and visual modalities, an
standardized on individuals between the ages of 16–90
Not counting the Brief Cognitive Status Exam, the su
include LogicalMemory (recall for a short story); Verbal
Associates (recall for related and unrelated word p
Designs (recall of spatial locations and visual details);
Reproduction (recall of geometric designs); Spatial Ad
(ability to manipulate visual–spatial information in wo
memory); and Symbol Span (ability to manipulate desi
working memory). The average internal consistency reli



of these subtests ranged from .82 to .97 (Wechsler, Holdnack, &
Drozdick, 2009).

IV co
roug
us o
geo

e, se
dents
Whit
use

es ar

ta o
scor
sing
dent
mbe
hom

ith n
31

tests

n th
ly th
g dat
and
signs

and Spatial Addition subtests. In addition, there were 276
respondents missing data on Figure Weights, Letter-Number

sub-

to the
gness;
ge of
etter-
Addi-
values
r than
ose to
imum
nlike
data

ave to
issing

roach

some
iables
Black
bined
e first
IV and
roups.

86 C.L. Frisby, A.A. Beaujean / Intelligence 51 (2015) 79–97
2.2. Participants

Participants were members the WAIS-IV and WMS-
normative sample, which is made up of adults aged 16 th
90 years. The sample closely matched the 2005 cens
gender, age, race/ethnicity, parent education level, and
graphic region. For more information about the sampl
Wechsler et al. (2009). There were 1250 total respon
1015 of whom identified as either Black (n = 180) or
(n = 835). Only the Black and White respondents were
for this study. Descriptive statistics for the subtest scor
given in Table 1.

2.2.1. Missing data
There were 737 respondents with no missing da

any of the WAIS-IV subtests, 1 respondent missing a
on the Picture Completion subtest, 1 respondent mis
score on the Cancellation subtest, and 276 respon
missing data on the Figure Weights, Letter-Nu
Sequencing, and Cancellation subtests, almost all of w
were age 70 or above. There were 700 respondents w
missing data on any of the WMS-IV subtests and
missing data on the Designs and Spatial Addition sub
all age 70 or above.

There were 699 respondents with no missing data o
WAIS-IV or WMS-IV subtests, 1 respondent missing on
score on the Cancellation subtest, 38 respondents missin
on only the Designs and Spatial Addition subtests,
respondents missing data on the Picture Completion, De
Table 1
Descriptive statistics for Wechsler Adult Intelligence Scale-Fourth Edition (W

Battery Subtest n

WAIS-IV Block Design 1015
WAIS-IV Matrix Reasoning 1015
WAIS-IV Figure Weights 739
WAIS-IV Picture Completion 1014
WAIS-IV Symbol Search 1015
WAIS-IV Coding 1015
WAIS-IV Cancellation 738
WAIS-IV Vocabulary 1015
WAIS-IV Information 1015
WAIS-IV Comprehension 1015
WAIS-IV Similarities 1015
WAIS-IV Arithmetic 1015
WAIS-IV Digit Span 1015
WAIS-IV Letter-Number Sequencing 739
WAIS-IV Visual Puzzles 1015
WMS-IV Logical Memory I 1015
WMS-IV Logical Memory II 1015
WMS-IV Visual Reproduction I 1015
WMS-IV Visual Reproduction II 1015
WMS-IV Verbal Paired Associates I 1015
WMS-IV Verbal Paired Associates II 1015
WMS-IV Designs I 700
WMS-IV Designs II 700
WMS-IV Spatial Addition 700
WMS-IV Symbol Span 1015
-
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Sequencing, Cancellation, Designs, and Spatial Addition
tests, all age 70 or above.

The majority of the missing data are missing due
design of the data collection (e.g., planned missin
McArdle, 1994). That is, respondents above the a
70 years were not administered the Figure Weights, L
Number Sequencing, Cancellation, Designs, and Spatial
tion subtests. While deleting respondents with missing
on these variables (i.e., only keeping respondents younge
70 years) would likely not bias the results, we instead ch
handle the missing data using full information max
likelihood (FIML) estimation (Enders & Bandalos, 2001). U
traditional ML estimation, FIML makes use of all the
available from each respondent so respondents do not h
be removed from the dataset because they were m
values.

2.3. Data analysis

We tested SH using two methods, the CV app
(Method 1) and a MG-CFA approach (Method 2).

2.3.1. Method 1: correlated vector analysis
We followed the steps outlined in Section 1.4.1, with

modifications. First, we group centered the var
(i.e., created mean deviation scores separately for the
andWhite groups) before conducting the EFA in the com
group. Second, as thereweremissing values in the data,w
created FIML-based correlationmatrices of all theWAIS-
WMS-IV subtests for the Black, White, and combined g
AIS-IV) and Wechsler Memory Scale-Fourth Edition (WMS-IV) subtests.

Mean SD Skew Kurtosis

10.22 2.98 0.02 −0.35
10.30 3.02 −0.01 −0.50
10.40 3.02 0.01 −0.30
10.14 3.03 −0.22 −0.39
10.14 2.91 0.09 0.05
10.17 2.92 −0.03 −0.12
9.99 2.89 0.38 0.20

10.30 2.92 0.13 −0.14
10.06 3.05 0.06 −0.50
10.49 3.07 −0.04 −0.22
10.28 2.85 −0.15 0.01
10.24 2.85 0.10 −0.42
10.26 2.80 0.19 −0.02
10.39 3.00 0.82 1.47
10.19 3.05 0.38 −0.46
10.10 3.02 −0.26 −0.24
9.95 2.94 −0.18 0.01

10.12 3.09 −0.32 0.12
10.02 3.12 0.13 0.24
9.91 2.98 0.06 −0.24
9.88 3.00 −0.41 −0.19

10.11 3.01 −0.06 −0.24
10.01 3.04 −0.07 0.06
10.07 3.07 −0.26 −0.43
10.07 3.00 −0.03 −0.35



Weused these correlationmatrices for the EFAs. To calculate g-
loadings, we used the analytic bi-factor rotation. To assess
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factor similarity between the Black and White group
estimated the congruence coefficients (Lorenzo-Seva
Berge, 2006), with values ≥ .95 indicating sufficient sim
for g and values ≥ .85 indicating sufficient similarity f
other factors (te Nijenhuis & van der Flier, 2003).

We measured the Black–White standardized differen
calculating Hedges (1981) effect size (ES) measure,
expresses the mean difference between groups in sta
deviation units. We used Hedges' ES as it corrects for the
bias in the more commonly used d effect measure (Boren
2009). The ES formula is given in Eq. (1).

ES ¼ 1−
3

4 dfð Þ−1

� �
xW−xBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nw−1ð Þs2W þ nB−1ð Þs2B
df

s

where, xB and xW are the mean scaled scores of the Blac
White groups, respectively, sB

2 and sW
2 are the resp

variances for the Black and White groups, and df ar
degrees of freedom calculated as nW + nB − 2, where ni
ith group's sample size.

We conducted the CV analyses using two versions
WAIS-IV/WMS-IV data. In the first version, we used all su
within both the WAIS-IV and WMS-IV batteries. D
statistical problems experienced by previous resea
using both immediate and delayed versions of the W
subtests (see Section 2.3.2), in the second analysis we om
the WMS-IV immediate subtests. This second analysi
conducted in order to compare the results from the CVan
CFA analyses.

2.3.2. Method 2: multi-group confirmatory factor analysis
Independent factor analytic studies of the W

(e.g., Benson, Beaujean, & Taub, in press; Benson, Hu
Kranzler, 2010; Gignac & Watkins, 2013; Nelson, Caniv
Watkins, 2013; Niileksela, Reynolds, & Kaufman, 2013;
Bergman, & Hebert, 2012; Wechsler, 2008b) have show
scale to reflect four or five latent variables, mapping onto
the four WAIS-IV index scores (Verbal Comprehe
Perceptual Reasoning, Working Memory, Processing S
or the Cattell–Horn–Carroll (Schneider & McGrew,
theory (Comprehension Knowledge, Visual Processing,
Reasoning, Short Term Memory, and Processing S
respectively. The difference in factor models between s
likely comes from whether the model allowed the subte
have cross-loadings. Weiss et al. (2013a) argued that the
and five-factor models were both sufficient for demonst
model fit and full factorial invariance between clinica
nonclinical samples.

There have been some difficulties in forming CFA m
with WMS data (Wechsler et al., 2009, p. 6). In the WM
some subtests require examinees to recall stimuli im
ately after presentation (subtests comprising the Imme
Index), while other subtests ask examinees to reca
stimuli after a delayed period of time after which inte
ing and nonrelated subtests have been administered
ously (subtests comprising the Delayed Index). The diff
e
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parameter estimates (Millis, Malina, Bowers, & R
1999; Price, Tulsky, Millis, & Weiss, 2002). Thus, most
analyses of theWMS-IV data (e.g., Holdnack, Zhou, Lar
Millis, & Salthouse, 2011; Miller, Davidson, Schind
Messier, 2013; Salthouse, 2009), including those i
WMS-IV technical and interpretive manual (Wechsler
2009, p. 60), only include one version of these su
(usually the delayed) along with the two visual wo
memory measures (Spatial Addition and Spatial Span)

There have been a few studies examining the
structure of the WAIS-IV and WMS-IV subtests concurr
Holdnack et al. (2011) completed the most thorough
examining thirteen different models in the 900 partic
from the co-norming sample between the ages of 16–69
They found two models fit the data relatively well. Th
model included seven Stratum II factors (Verbal Compr
sion, Perceptual Reasoning, Processing Speed, Auditory W
ing Memory, Visual Working Memory, Auditory Memor
Visual Memory) without a g factor. The second
contained five Stratum II factors (Verbal Comprehe
Perceptual Reasoning, Processing Speed, Working Me
and Long-Term Retrieval) and a higher-order g factor.

Miller et al. (2013) analyzed WAIS-IV/WMS-IV dat
found a model similar to Holdnack et al.'s (2011) five-
model. Specifically, they found five Stratum II factors (V
Comprehension, Perceptual Reasoning, Working Me
Processing Speed, and Delayed Memory) and a higher-o
factor fit their data best. Salthouse's (2009) found that a
with six Stratum II factors and a higher-order g factor
WAIS-IV/WMS-IV analysis best. Four factors were the sa
those from Miller et al.'s and Holdnack et al.'s studies (V
Comprehension, Fluid Reasoning, Working Memory, Pr
ing Speed). The difference is that Salthouse's model spli
DelayedMemory/Long-Term Retrieval factor into two se
factors: Verbal Memory, and Visual Memory. Likely
difference stems from Salthouse using the immediate v
of the WMS-IV subtests instead of the delayed.

For our MG-CFA study, we used all WAIS-IV subtes
only the delayed and visual working memory subtests
the WMS-IV. We chose the delayed subtests ove
immediate tests because those are the ones most comm
used and are the ones used in the factor analyses repor
the WMS-IV technical and interpretive manual (We
et al., 2009). Our investigation differs from pre
investigations in that we used a BF model to extract
tested for invariance between the Black and White g
before evaluating SH.

2.3.2.1. Determining model fit. To determine model f
examined multiple indices (McDonald & Ho, 2002)
represent a variety of fit criteria (Marsh, Hau, & Gr
2005). Specifically,we examined (a) theχ2, (b) the compa
fit index (CFI), (c) root mean square error of approxim
(RMSEA), (d) standardized root mean square residual (S
and (e) Mcdonald's non-centrality index (Mc). In ad
following Boomsma's (2000) recommendationwe also rep
Akaike's information criterion (AIC) and Schwarz's Ba
information criterion (BIC). For all models, we looke
patterns in the fit statistics, and judged acceptance/reject



the specificmodel based on themajority of the indices.We used
the following criteria for overall model fit: (a) CFI ≥ .96 (Yu,
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2002); (b) RMSEA ≤ .08 (Browne & Cudeck, 1993; Hu & B
1999); (c) SRMR ≤ .08, (Hu & Bentler, 1999; Sivo, Fan, W
Willse, 2006); (d)Mc N .90.While AIC and BICmeasure dif
aspects of model fit, for both measures smaller values in
better approximations of the true model (Markon & Kr
2004). When specifically comparing models for invar
Meade, Johnson, and Braddy (2008) suggest that changes
values of .002 and changes in Mc values between .008–.0
useful cutoff points.

All analyses were conducted using the R statistica
gramming language (R. Development Core Team, 2014),
the psych (Revelle, 2012) and lavaan (Rosseel, 2012) pac
To conduct the EFA, fit the latent variable models, and
invariance in R, we followed the steps outlined in Bea
(2014a, 2014b).

3. Results

3.1. Method 1: correlated vectors

3.1.1. All subtests
We conducted the first step of the CV analyses usi

subtests in the WAIS-IV and WMS-IV co-normed d
Velicer's (1976) minimum average partial (MAP) cri
suggested 2 factors, while Horn's (1965) parallel an
suggested 4–8 factors. We believe that the seven-
solution made the most interpretive sense (see Table 2
extracted factors consist of g, a Verbal Comprehension
(F1), a Logical Memory factor (F2), a Designs factor (
Verbal Paired Associates factor (F4), a Processing Speed
(F5), and a Short–Term Memory factor (F6).

Table 2

Results from exploratory factor analysis of all subtests extracting seven factor

Factor pattern coe

Battery Test g F1

WAIS-IV Figure Weights 0.71 0
WMS-IV Visual Reproduction I 0.68 −0
WAIS-IV Visual Puzzles 0.67 −0
WAIS-IV Matrix Reasoning 0.66 0
WMS-IV Symbol Span 0.66 0
WAIS-IV Block Design 0.65 −0
WAIS-IV Arithmetic 0.65 0
WAIS-IV Digit Span 0.62 0
WAIS-IV Similarities 0.61 0
WMS-IV Spatial Addition 0.61 0
WAIS-IV Vocabulary 0.59 0
WMS-IV Visual Reproduction II 0.59 −0
WAIS-IV Comprehension 0.59 0
WAIS-IV Information 0.59 0
WMS-IV Verbal Paired Associates I 0.58 −0
WMS-IV Logical Memory I 0.58 0
WAIS-IV Letter–Number Sequencing 0.58 0
WAIS-IV Picture Completion 0.58 0
WMS-IV Verbal Paired Associates II 0.55 −0
WMS-IV Logical Memory II 0.54 0
WAIS-IV Coding 0.52 0
WAIS-IV Symbol Search 0.51 −0
WMS-IV Designs I 0.50 −0
WMS-IV Designs II 0.44 −0
WAIS-IV Cancellation 0.38 −0

Note. Factors were rotated using analytic bi-factor rotation. Subtests are prese
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for g and had values ≥ .87 for all the other factors. Since th
were sufficiently high, we combined Black and White sa
and extracted the g loadings from an analytic BF rotatio
subtest data we used for the correlated vectors (CV) an
are given in Table 3. The Pearson correlation betwee
corrected g loadings and the corrected Black-White stan
ized differences was 0.58 (95% CI: 0.53–0.62), whi
Spearman correlation was .62 (95% CI: .58–.66).

3.1.2. All subtests except WMS-IV immediate
We performed this analysis to mirror the multi-grou

we conducted. MAP criterion suggested 2 factors, while p
analysis suggested 2–5 factors. We believe that the five-
solution made the most interpretive sense (see Table 4
comprised of g, a Comprehension Knowledge factor (
Processing Speed factor (F2), a Working Memory facto
and a Visual Spatial Factor (F4).

The CC for gwas 1.00, andwas ≥ .89 for all the others fa
Since the CCs were sufficiently high, we combined Blac
White samples and extracted the g loadings from an analy
rotation. The subtest data we used for the CV analysis are
in Table 5. The Pearson correlation between the corre
loadings and the corrected standardized Black–White
ences is 0.57 (95% CI: 0.53–0.61), while the Spea
correlation is .65 (95% CI: .61–0.68).

3.2. Method 2: multi-group confirmatory factor analysis

3.2.1. Testing assumptions
A major assumption of SEM is that the manifest var

are multivariate normal (Kline, 2012). All WAIS-IV and
s using the combined sample (n = 1015).

fficients

F2 F3 F4 F5 F6

.11 −0.12 −0.03 −0.05 −0.02 0.05

.06 −0.11 0.11 −0.02 0.04 −0.21

.06 −0.20 0.00 −0.15 −0.02 −0.14

.04 −0.15 0.04 −0.07 0.04 0.00

.00 −0.03 0.18 0.02 0.05 0.03

.02 −0.21 0.04 −0.18 0.02 −0.13

.19 −0.04 −0.04 −0.07 −0.01 0.21

.05 −0.04 0.00 −0.04 0.08 0.55

.48 0.03 −0.08 −0.04 −0.06 0.01

.02 −0.14 0.12 −0.08 0.10 0.07

.66 0.05 −0.03 0.04 0.00 0.05

.12 −0.05 0.15 0.03 0.00 −0.20

.52 0.05 −0.02 −0.03 −0.03 0.02

.50 −0.02 −0.06 −0.07 −0.04 −0.05

.02 0.08 0.04 0.68 −0.01 0.01

.03 0.69 −0.03 0.03 −0.03 0.02

.03 −0.09 −0.02 −0.03 0.03 0.46

.00 −0.01 0.00 −0.09 0.09 −0.08

.01 0.07 0.03 0.74 −0.03 −0.03

.02 0.76 −0.03 0.09 −0.01 −0.05

.00 0.00 0.02 −0.03 0.57 0.08

.04 −0.04 0.01 −0.04 0.65 −0.01

.04 −0.03 0.74 0.01 0.05 −0.03

.04 −0.02 0.69 0.07 −0.03 0.03

.10 −0.04 0.11 −0.03 0.37 0.07

nted in descending order of their g loadings.



IV univariate subtest skewness values were b 2 and all kurtosis
values were b 7, so were in acceptable limits (West, Finch, &

skew
2,p =
ariat
lotted
sam
ersen

2012). Consequently, we believe that the data approximate a
multivariate normal distribution.

A, we
erbal
, and
r this
et the

Table 3
Data used in correlated vectors analysis of all subtests.

Battery Test ES nW nB Corrected ES g Loading Corrected g Loading

WAIS-IV Figure Weights 0.81 590 149 0.86 0.71 0.75
WMS-IV Visual Reproduction I 0.66 835 180 0.69 0.68 0.71
WAIS-IV Visual Puzzles 0.85 835 180 0.91 0.67 0.71
WAIS-IV Matrix Reasoning 0.79 835 180 0.84 0.66 0.70
WMS-IV Symbol Span 0.62 835 180 0.66 0.66 0.70
WAIS-IV Block Design 1.19 835 180 1.27 0.65 0.70
WAIS-IV Arithmetic 0.74 835 180 0.79 0.65 0.69
WAIS-IV Digit Span 0.62 835 180 0.64 0.62 0.64
WAIS-IV Similarities 0.80 835 180 0.85 0.61 0.66
WMS-IV Spatial Addition 0.78 560 140 0.81 0.61 0.64
WAIS-IV Comprehension 0.84 835 180 0.90 0.59 0.63
WAIS-IV Vocabulary 0.80 835 180 0.82 0.59 0.61
WAIS-IV Information 0.78 835 180 0.81 0.59 0.61
WMS-IV Visual Reproduction II 0.49 835 180 0.49 0.59 0.60
WMS-IV Logical Memory I 0.62 835 180 0.68 0.58 0.64
WAIS-IV Picture Completion 0.95 835 179 1.03 0.58 0.63
WAIS-IV Letter–Number Sequencing 0.60 590 149 0.64 0.58 0.61
WMS-IV Verbal Paired Associates I 0.47 835 180 0.49 0.58 0.60
WMS-IV Verbal Paired Associates II 0.46 835 180 0.50 0.55 0.60
WMS-IV Logical Memory II 0.60 835 180 0.65 0.54 0.58
WAIS-IV Coding 0.74 835 180 0.80 0.52 0.56
WAIS-IV Symbol Search 0.72 835 180 0.80 0.51 0.56
WMS-IV Designs I 0.56 560 140 0.61 0.50 0.55
WMS-IV Designs II 0.43 560 140 0.46 0.44 0.47
WAIS-IV Cancellation 0.38 589 149 0.43 0.38 0.43

Note. ES: Hedges' effect size. NW: White sample size. NB: Black sample size. Corrected: corrected for unreliability. Subtests presented in descending order of their g
loading. Scores from the Black participants were subtracted from the White participants, so a positive ES indicates that the average score from the White group was
higher.
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Curran, 1995). While Mardia (1980) tests of multivariate
and kurtosis were larger than expected (b1,p = 30.81, b
687.85, n = 738, p = 21), a Q–Q plot of the multiv
distribution does not lookmarkedly different from data p
from a knownmultivariate normal distributions with the
n, number of variables, and correlation matrix (And

Table 4

Results from exploratory factor analysis of all subtests except the WMS-IV im

Factor

Battery Test g

WAIS-IV Figure Weights 0.70
WMS-IV Symbol Span 0.68
WAIS-IV Matrix Reasoning 0.66
WAIS-IV Visual Puzzles 0.66
WAIS-IV Block Design 0.65
WAIS-IV Arithmetic 0.63
WAIS-IV Vocabulary 0.63
WAIS-IV Similarities 0.63
WMS-IV Visual Reproduction II 0.61
WAIS-IV Comprehension 0.61
WMS-IV Spatial Addition 0.61
WAIS-IV Information 0.61
WAIS-IV Digit Span 0.58
WAIS-IV Picture Completion 0.56
WAIS-IV Letter–Number Sequencing 0.54
WMS-IV Verbal Paired Associates II 0.54
WAIS-IV Coding 0.51
WAIS-IV Symbol Search 0.51
WMS-IV Designs II 0.50
WMS-IV Logical Memory II 0.48
WAIS-IV Cancellation 0.39

Note. Factors were rotated using analytic bi-factor rotation. Subtests presente
e

e
,

3.2.1.1. Confirmatory factor analysis. Based on our EF
initially fit a bi-factormodel with four Stratum II factors (V
Comprehension, Processing Speed, Visual Processing
Working Memory). The values for the fit statistics fo
model (B0) are shown in Table 6. The fit measures me
mediate subtests, extracting five factors using the combined sample (n = 1015).

pattern coefficients

F1 F2 F3 F4

0.09 −0.03 0.11 0.15
−0.09 0.02 0.06 −0.05

0.01 0.04 0.05 0.16
−0.07 −0.01 −0.06 0.32
−0.02 0.02 −0.04 0.36

0.17 −0.02 0.25 0.10
0.60 0.02 0.02 −0.06
0.48 −0.03 0.01 0.02

−0.19 −0.01 −0.12 −0.06
0.50 −0.01 0.00 −0.03

−0.03 0.08 0.11 0.13
0.49 −0.01 −0.04 0.09
0.00 0.01 0.63 −0.02
0.03 0.11 −0.03 0.11

−0.02 −0.02 0.50 0.03
−0.08 −0.05 −0.02 −0.38

0.03 0.59 0.04 −0.02
−0.01 0.64 −0.04 0.02
−0.23 −0.07 0.03 −0.11

0.10 0.05 −0.05 −0.36
−0.13 0.34 0.07 −0.01

d in descending order of their g loading.



RMSEA and SRMR criteria, but do notmeet theMc criterion and
are at the threshold of the CFI criterion. Examining the residual
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Table 5
Data used in correlated vectors analysis of all subtests except the WMS-IV immediate subtest scores.

Battery Test ES nW nB Corrected
ES

g Loading Corrected
g loading

WAIS-IV Figure Weights 0.81 590 149 0.86 0.70 0.74
WMS-IV Symbol Span 0.62 835 180 0.66 0.68 0.73
WAIS-IV Matrix Reasoning 0.79 835 180 0.84 0.66 0.70
WAIS-IV Visual Puzzles 0.85 835 180 0.91 0.66 0.70
WAIS-IV Block Design 1.19 835 180 1.27 0.65 0.69
WAIS-IV Arithmetic 0.74 835 180 0.79 0.63 0.67
WAIS-IV Similarities 0.80 835 180 0.85 0.63 0.67
WAIS-IV Vocabulary 0.80 835 180 0.82 0.63 0.65
WAIS-IV Comprehension 0.84 835 180 0.90 0.61 0.66
WMS-IV Spatial Addition 0.78 560 140 0.81 0.61 0.64
WAIS-IV Information 0.78 835 180 0.81 0.61 0.63
WMS-IV Visual Reproduction II 0.49 835 180 0.49 0.61 0.62
WAIS-IV Digit Span 0.62 835 180 0.64 0.58 0.60
WAIS-IV Picture Completion 0.95 835 179 1.03 0.56 0.61
WMS-IV Verbal Paired Associates II 0.46 835 180 0.50 0.54 0.59
WAIS-IV Letter–Number Sequencing 0.60 590 149 0.64 0.54 0.58
WAIS-IV Symbol Search 0.72 835 180 0.80 0.51 0.56
WAIS-IV Coding 0.74 835 180 0.80 0.51 0.55
WMS-IV Designs II 0.43 560 140 0.46 0.50 0.55
WMS-IV Logical Memory II 0.60 835 180 0.65 0.48 0.52
WAIS-IV Cancellation 0.38 589 149 0.43 0.39 0.44

Note. ES: Hedges' effect size. nW: White sample size. nB: Black sample size. Corrected: Corrected for unreliability. Subtests presented in descending order of their g
loading. Scores from the Black participants were subtracted from the White participants, so a positive ES indicates that the average score from the White group was
higher.
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correlations and modification indices indicated that we s
include a fifth, Long-Term Retrieval factor, making the
similar to that used by Holdnack et al. (2011) and Mille
(2013). In addition, we allowed the residuals betwee
WAIS-IV Figure Weights and Arithmetic subtests an
residuals between the WMS-IV Logical Memory and V
Paired Associates subtests to covary. This new model (
the data better than the model with four factors, so we u
for our baselinemodel. A path diagramof themodel is sho
Fig. 2. In Model B1, not all subtests loaded on Stratum II fa
indicating that g explained all the covariance between
subtests and the other subtests in the dataset.

Table 6

Model fit for combined WAIS-IV and WMS-IV multi-group confirmatory facto

Model Description

B0 Baseline: 4 Stratum II factors, all respondents
B1 Baseline: 5 Stratum II factors, all respondents
B1.B Baseline: Model B1, Black respondents
B1.W Baseline: Model B1, White respondents
M1 Configural Invariance
M2 Weak Invariance
M3 Strong Invariance
M4a Strict invariance (variances)
M4b Strict invariance (variances, except Designs II)
M4c Strict invariance (covariances)
M5 Latent variances
M6 Latent mean differences of all factors
M6a Latent mean differences of Working Memory and Processing Sp

constrained to be zero
M7 Latent mean differences of Working Memory, Processing Speed

constrained to be zero

Note. CFI: comparative fit index; RMSEA: root mean square error of approxim
index, AIC: Akaike's information criterion, BIC: Bayesian information criterion
d
l
l.
e
e
l
t
t
n
,
e

better in theWhite group than in the Black group, althou
fit is equivalent in most respects. We then assesse
invariance using the steps listed in Section 1.4.2. The
straints involved in the configural model (M1), weak
(M2), and strong invariancemodel (M3) did not deprecia
model fit. In fact, the AIC and BIC that showed the mode
more constraints fit slightly better than the models w
them. Thus, it appears that the factors are comparable
groups.

To examine strict invariance, we added constraints i
parts, one for the residual variances and once for the re
covariances. After constraining the residual variances (
r models.

χ2 df p CFI RMSEA SRMR Mc AIC BIC

552.662 173 .00 .961 .05 .035 .829 90344 90733
362.938 166 .00 .980 .03 .028 .908 90168 90592
207.926 166 .02 .980 .04 .040 .890 16010 16285
320.091 166 .00 .976 .03 .032 .912 73958 74364
528.017 332 .00 .977 .03 .033 .908 89968 90815
563.259 368 .00 .977 .03 .038 .908 89931 90601
591.135 383 .00 .976 .03 .040 .903 89929 90525
657.701 404 .00 .970 .04 .042 .883 89954 90446
633.463 403 .00 .973 .03 .041 .893 89931 90429
634.47 405 .00 .973 .03 .041 .893 89928 90416
649.64 411 .00 .972 .03 .054 .889 89932 90389
875.523 417 .00 .946 .05 .126 .798 90145 90573

eed 653.614 413 .00 .972 .03 .055 .888 89932 90380

, and g 802.278 414 .00 .954 .04 .103 .823 90078 90521

ation; SRMR: standardized root mean square residual, Mc: McDonald's non-centrality
. nBlack = 180, nWhite = 835.



the model showed some depreciation in fit. Consequently, we
examined the modification indices, which indicated that the

tween

groups. The resulting model (M4b) fit the data better than
model M4a, and only slightly worse than model M3. We then

d not

Fig. 2. Bi-factor model of the WAIS-IV and WMS-IV subtests. Subtest specific/error variance terms not shown for space considerations.
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residuals for the Designs II subtests should be freed be
 constrained the residual covariances (M4c), which di



worsen the model fit. Thus, it appears that the construct
reliabilities for Verbal Comprehension, Visual Processing,
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appreciable depreciation in model fit. Subsequently, we
examined the latent means from model M5 to see if there
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Working Memory, and Processing Speed factors are the
across groups, and almost the same for g and Long
Memory.

Next, we constrained the latent variables' varianc
fixing all of them to be 1.0 (model M5). While this step
required for assessingmeasurement invariance, it is requ
examine if the groups used equivalent ranges of the
variables to respond to the tests. This did not appear to w
model fit. The factor loadings from this final model (M
given in Table 7.

Last, we examined the differences in the latent var
means. First, we constrained all means to be the
(i.e., zero) across groups (M6). This model showe

Table 7
Factor loadings for final model (Model M5) of WAIS-IV/WMS-IV data.
Factor Subtest

g
Similarities
Vocabulary
Information
Comprehension
Block Design
Visual Puzzles
Picture Completion
Matrix Reasoning
Figure Weights
Digit Span
Arithmetic
Letter–Number Sequencing
Symbol Search
Coding
Cancellation
Logical Memory II
Visual Reproduction II
Verbal Paired
Associates II
Designs II
Symbol Span
Spatial Addition

Verbal Comprehension
Similarities
Vocabulary
Information
Comprehension
Arithmetic
Logical Memory II

Visual Processing
Block Design
Visual Puzzles
Picture Completion
Visual Reproduction II

Working Memory
Digit Span
Arithmetic
Letter–Number Sequencing

Processing Speed
Symbol Search
Coding
Cancellation

Long-Term Retrieval
Logical Memory II
Visual Reproduction II
Verbal Paired Associates II
Designs II
Symbol Span

Note. For all analyses, we used full information maximum likelihood estimati
e

y
t
o
t
n
e

s
e
n

were any factors with minimal group differences. The
mean differences in the Working Memory and Proc
Speed factors seemed likely due to sampling error as the
95% CIs contained zero. Consequently, we set these fa
latent means to be zero for both groups (M6a). This mod
as well as model M5. We show the latent mean differenc
the factors based on model M6a in Table 8.

As the latent variables do not have an inherentmean,
themeanof the Black group to zero and estimated theme
the White group. Thus, the values in Table 8 show how
higher (positive value) or lower (negative value) the
mean for the White group is from the latent mean of the
group. As the variance of the latent variables in both gro
Unstandardized estimate SE Standardized estimate

1.63 0.08 0.60
1.63 0.08 0.59
1.69 0.09 0.58
1.70 0.09 0.58
1.73 0.08 0.64
1.79 0.08 0.63
1.69 0.09 0.58
2.03 0.08 0.71
2.11 0.09 0.73
1.65 0.08 0.61
1.75 0.08 0.64
1.70 0.09 0.58
1.53 0.08 0.54
1.60 0.08 0.56
1.13 0.10 0.40
1.18 0.09 0.41
1.52 0.10 0.50

1.33 0.09 0.45
1.36 0.10 0.56
1.90 0.08 0.65
1.94 0.10 0.65

1.38 0.08 0.51
1.81 0.07 0.65
1.47 0.08 0.50
1.61 0.08 0.55
0.49 0.08 0.18
0.62 0.10 0.21

1.43 0.17 0.52
0.89 0.13 0.31
0.45 0.12 0.15
0.48 0.14 0.16

2.11 0.36 0.78
0.45 0.11 0.17
1.03 0.20 0.35

1.77 0.13 0.63
1.51 0.12 0.53
1.06 0.12 0.37

0.64 0.14 0.22
1.33 0.17 0.44
0.96 0.14 0.32
1.07 0.16 0.44
0.69 0.12 0.24

on to account for missing data.



one, these mean differences are given in standard deviation
units. The White group is approximately 1.16 SDs higher on g
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Table 8
Black–White mean differences on latent variables.

95% CI

Factor Estimate SE Lower Upper

g 1.16 0.10 0.97 1.34
Verbal Comprehension 0.23 0.11 0.01 0.45
Visual Processing 0.80 0.15 0.51 1.08
Working Memory 0 – – –
Processing Speed 0 – – –
Long-Term Retrieval −0.35 0.16 −0.65 −0.04

Note. Estimates came from model M6a (see Table 6). Latent mean difference
for Working Memory and Processing Speed were constrained to zero. For a
latent variables, the variances were fixed at 1.0 and the means for the Blac
group were fixed at 0.0. Thus, a positive difference indicates the average scor
from the White group was higher, while a negative difference indicates th
average score from the Black group was higher.
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0.80 SDs higher on Visual Processing, and .23 SDs high
Verbal Comprehension than the Black group. Conversel
Black group was 0.35 SDs higher on the Long-Term Ret
factor.

Model M6a supports theweak form of SH, so to rule o
contra hypothesis version of SH, we fit amodel that allow
mean differences only in Stratum II factors. Here, we estim
the latent means differences for Verbal Comprehension,
Spatial Reasoning, and Long-Term Retrieval, but constr
the latent mean differences for g, Working Memory
Processing Speed to be zero (model M7). The model
worse than that for model M6a, indicating that s
differences are not due to latent mean differences in St
II factors alone.

4. Discussion

Interpretations of the meaning of subgroup differen
average score performance on cognitive tests have
plagued by ad hoc “armchair” explanations that have s
confusion rather than clarity among practitioners an
searchers (e.g., Helms, 1997). The correlated vector
methodwas amajor step forward in establishing an empi
based method to both posit and test a coherent, parsimo
theory—called the Spearman hypothesis (SH)—that ex
these differences (Jensen, 1985). Themulti-group confirm
factor analysis (MG-CFA) method represents a second
forward in providing a technique to assess measure
invariance across comparison groups, as well as prov
simultaneous test for the strong, weak and contra hypo
associated with SH. Studies using MG-CFA have often y
equivocal results, which we contend are primarily d
shortcomings in theway g has beenmodeled. In this artic
described how the bi-factor model (BF; Holzinger & Swin
1937; Jennrich & Bentler, 2011, 2012) can offer advanta
both the CV and MG-CFA approaches of examining SH.

We demonstrated the use of the BF model to examine
a large co-normed standardization dataset of scores fro
Wechsler Adult Intelligence Scale-Fourth Edition (WA
and Wechsler Memory Scale-Fourth Edition (WMS-IV)
data has the advantage of including a wide variety of m
tests as well as containing an overrepresentation of me
,
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Reynolds, 1997). Consequently, we expected to find supp
the weak form of SH in this dataset.

Our CV analysis revealed the correlation between B
White score differences and g loadings to be approximate
with the Pearson correlation being slightly lower an
Spearman correlation being slightly higher. As there
agreed-upon value that differentiates the strong and
forms of SH, we are unsure if this supports the weak or s
version of SH. It is likely that these findings favor the
version of SH because more than half the variance in the
differences are not accounted for by g.

The results from theMG-CFA also support the weak fo
SH. While there were large mean differences in g, there
also substantial mean differences in the Visual Proc
factor as well. In addition, there were moderate differen
the Verbal Comprehension and Long-Term Retrieval fa
with the latter favoring the Black sample. Thus, while g
play a part in the score differences between Black and
participants, it is not the only construct contributing to
differences.

4.1. Integration with previous literature

Our finding of large Black–White differences in g (1.16
and Visual Processing (0.80 SDs) is consistent with oth
studies. In Jensen's (1998) summary of SH studies, he rep
the largest Black–White differences (favoring Whites)
found on tests that load highly on both g and a S
Visualization (i.e., Visual Processing) factor. More rec
Dragt's (2010) meta-analysis of SH studies confirmed Je
findings:

The fact that tests that are heavily loaded on eith
[Visual Processing] factor or [Short-Term Memory] f
consistently cause small deviations from the result pr
ed by the strong form of Spearman's hypothesis di
that this form must be rejected. The weak for
Spearman's hypothesis, however, is strongly confi
(p. 61).

At the other extreme, our finding of no Black–
differences inWorkingMemory and a small difference fav
the Black respondents in Long-Term Retrieval is cons
with the SH literature as well (Dolan & Hamaker, 2001; J
& Reynolds, 1982).

As have previous studies of SH (Dolan, 2000; Do
Hamaker, 2001), the results from the MG-CFA indicate
there was strict invariance for the majority of the WA
WMS-IV subtests. The only exceptionwas theWMS-IV D
II subtest, whose error variance was not the same be
groups. Unlike previous studies, however, we were a
differentiate the effects of g on the group differences fro
effects of the Stratum II factors. Previous MG-CFA studie
used HOF models were equivocal about whether i
differences in g, differences in Stratum II factors, or bot
were causing the observed test score differences. Our us
bi-factor model enabled us to show that the observe
scores were due to differences in g as well as differen
Stratum II factors (Visual Processing, Verbal Comprehe
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and Long-Term Retrieval). That is, our study confirmed the
weak form of SH, consistent with Jensen's (1998) interpreta-
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Critiques of the CV method were issued over 15 years ago
(e.g., Ashton & Lee, 2005; Dolan, 2000; Millsap, 1997), yet the
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tion of the SH data.

4.2. Final thoughts on comparing approaches to investigati

4.2.1. Comparison of results from the current study
Our study revealed noteworthy similarities between t

andMG-CFA approaches used to investigate the SHwhen
a BF model to represent g. Both approaches showed that
estimated invariantly in both the Black and White grou
well as showed large Black–White differences on g. T
analysis yielded a correlation between Black–White differ
and g between 0.58 (Pearson) and 0.62 (Spearman), wh
MG-CFA analysis yielded difference in the latent mean o
1.16 SDs.

There were some noticeable differences between t
and MG-CFA approaches as well. First, the MG-CFA was a
uncover more nuanced information than the CV an
Specifically, the MG-CFA not only found differences in
also found group differences in Visual Processing (0.8
favoring the White sample), Verbal Comprehension (0.2
favoring the White sample), and Long-Term Retrieval f
(0.34 SDs favoring the Black sample). Second, the M
found the construct reliability estimates to be very s
between the groups for all the factors, an issue the CV m
does not even attempt to address. Third, while both the C
MG-CFA approaches showed large Black–White differen
g, themagnitude of the difference is somewhat larger for t
analysis than the MG-CFA. Specifically, the d effect size
correspond to the correlations from the CV approach ar
(Pearson) and 1.58 (Spearman).

4.2.2. Preferred method for assessing Spearman's hypothesi
The results from our study are in agreement with

from Dolan and his colleagues (Dolan, 2000; Dolan & Ham
2001; Dolan et al., 2004; Lubke et al., 2001) showing th
MG-CFA approach to testing SH is typically better than
CV. First, the MG-CFA approach is better able to te
assumptions inherent in SH than the CV approach. Seco
using a BF approach to using a CFA model, the approac
provide more information about the nature of the bet
group differences. For example, the BF MG-CFA app
allows for an assessment of group differences in g an
Stratum II factors simultaneously. Thus, it allows for a
investigation of the strong, weak, and contra forms of SH.
although seldom discussed in the SH literature (howeve
Irwing, 2012), the BF MG-CFA approach allows f
assessment of construct reliability differences between g
for both g and the Stratum II factors. The current study
strict invariance for all the subtests (except Designs II) a
as invariance in the latent variances. Thus, not only a
between-group construct reliabilities nearly identical, bu
groups used equivalent ranges of the latent variables
responding to the test questions. Where strict invarian
found, however, thenwe could have followed theMG-CFA
an investigation of the reliability of the measured cons
(Reise, Bonifay, & Haviland, 2013).

Despite the number of benefits the MG-CFA approac
over the CV approach, the CV approach to assessing S
differences between any groups) is still quite com
g
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method is still used. If the CVmethod is going to continue
used, further work needs to be done to determinewhat le
the correlation between g and the differences in test sco
required for support of the strong vs. weak vs. contra fo
SH. The current lack of agreed-upon values has caused a v
of correlation values to be interpreted as evidence supp
g's role in determining group differences (Dolan et al., 20
Monte Carlo study could be useful here. Specifically
simulating data from strong, weak, and contra forms of S
magnitude of the correlations from a CV analysis of all th
sets could be compared to give an idea about benchmar
support of each level of SH.

4.3. Bi-factor versus higher-order models for testing Spear
hypothesis

All prior studies that have compared the CV and M
methods for evaluating the SH have used a higher-order
(HOF) model. In contrast, we used a BF model and, t
knowledge, are the first to compare CV with a MG-CFA u
BF model's representation of g and the Stratum II factors

If g were the only concern in testing SH, then it mig
make much of a difference whether a BF or HOF mode
used (Jensen & Weng, 1994). SH does not focus solely
however, because theweak and contra forms also conside
influence of Stratum II factors. In the HOF model, Stra
factors are comprised of two independent component
part that is due to g and the part that is independent of g.
BF model, Stratum II factors are defined as construct
influence a set of observed tests scores independent
influence of g (Chen et al., 2006). Thus, Murray and Jo
(2013, p. 420) concluded, “If ‘pure’measures of specific ab
are required then bi-factor model factor scores shou
preferred to those from a higher-order model.”

4.3.1. A bi-factor model of intelligence
Some may question whether a BF model is an appro

representation of intelligence. HOF models have been u
often in the field and some argue that they have a str
theoretical basis than BF models (e.g., Keith & Reynolds,
Murray & Johnson, 2013). Recently, Beaujean (submitt
publication) argued that a BF theory of intelligence
exist—the one that started with Spearman's conceptualiz
of g, group factors, and specific factors, and then evolv
Carroll's three-stratum theory.

First, a BF model's representation of g is consisten
Spearman's conceptualization because the BF model is j
extension of Spearman's two-factor theory that allow
Stratum II (group) factors (Holzinger & Swineford, 1939
is not surprising, given Holzinger's close association
Spearman (Harman, 1954). Moreover, Spearman's con
alization of group factors is aligned with the BF
(Spearman, 1933) and he accepted the g factor ext
from a BF model to be the same as that from his two-
theory (Spearman, 1946).

Second, John Carroll's conceptualization of intellige
more consistent with a BF model than a HOF model. C
(1997) argued that g should be extracted from a set of cog
ability measures first, and then the Stratum II factors sho



formed from covariances residualized after extracting g. This is
the same idea Holzinger and Swineford (1937) used in
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developing the BF model.
While Carroll (1996) often presented his three-st

theory as a higher-order model in figures, he warns a
taking the structure of his figures “too literally or prec
(p. 4) because he explicitly preferred the BF model to th
model. This is most noticeable in the CFAs Carroll conduc
order to verify his three-stratum model, as he consis
chose to use BF models instead of HOF models (Carroll,
1995).

One may argue that a HOF model is more preferable t
model because g is best thought of as an abstraction of St
II factors, not a direct influence on tests. This argument no
contradicts Carroll's (1996) conceptualization of g, but
contrary to Spearman's initial conceptualization of g as h
direct influences on the measured tests (Hart & Spea
1912).

5. Conclusion

The CVmethodwas amajor contribution to the study
The HOF MG-CFA method improved the CV metho
providing a technique to examine the assumptions unde
the use of CV. We believe that the BF MG-CFA approach m
an additional contribution to the field of studying SH beca
can provide a clearer picture of the contributions of
Stratum II factors to the differential size of group differen
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