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Spearman'’s hypothesis (SH) is a phrase coined by Arthur Jensen, which posits that the size of
Black-White mean differences across a group of diverse mental tests is a positive function of each
test's loading onto the general intelligence (g) factor. Initially, a correlated vector (CV) approach
was used to examine SH, where the results typically confirmed that the magnitude of g loadings
were positively correlated with the size of mean group differences in the observed test scores. The
CV approach has been heavily criticized by scholars who have argued that a more precise method
for examining SH can be better investigated using a multi-group confirmatory factor analysis
(MG-CFA). Studies of SH using MG-CFA have been much more equivocal, with results not clearly
confirming nor disconfirming SH.
In the current study, we argue that a better method for extracting g in both the CV and MG-CFA
approaches is to use a bi-factor model. Because non-g factors extracted from a bi-factor approach
are independent of g, the bi-factor model allows for a robust examination of the influence of g and
non-g factors on group differences on mental test scores. Using co-normed standardization data
from the Wechsler Adult Intelligence Scale-Fourth Edition and the Wechsler Memory Scale-
Fourth Edition, we examined SH using both CV and MG-CFA procedures. We found support for the
weak form of SH in both methods, which suggests that both g and non-g factors were involved in
the observed mean score differences between Black and White adults.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

tests that more strongly related to general intelligence (g)
exhibiting larger group differences (Jensen, 1998). Efforts to

Differences between racial, ethnic, and socioeconomic
groups in mean scores on general cognitive ability tests are
well-established (Gottfredson, 2005; Rushton & Jensen, 2005).
The magnitude of these differences, however, varies as a
function of the type of cognitive skills being measured, with
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explain these patterns in the magnitude of group performance
differences range from non-empirical speculations to those
grounded in theory and appropriate empirical procedures for
testing hypotheses.

1.1. Speculative Explanations

Speculative explanations simply proffer plausible, but ad
hoc, rationales for why a particular group obtains lower mean
scores than another group. These explanations are not tied to a
coherent, data-based theory. As one example, “cultural differ-
ences” is often evoked as a global, all-purpose explanation for
differing performance patterns among population subgroups.
This global explanation typically takes two forms. Some may
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argue that some subgroups, partly due to economic and social
disadvantages/differences from the more affluent mainstream,
are simply not exposed to certain academic stimuli as is the
case with more advantaged subgroups (Eells, 1951; Lupi & Ting
Woo, 1989; White, 1984), and thereby lower scores are due to a
presumed lack of exposure to tasks such as those found on
cognitive tests (see specificity doctrine; Jensen, 1984). Others
may argue that examinees from different racial/cultural groups
display different “culturally idiosyncratic” psychological and/or
stylistic patterns for interacting with test material, thereby
depressing scores (see Helms, 1992, 1997).

Speculative explanations suffer from two major flaws. First
and fundamentally, findings are explained only after they are
observed. Testable hypotheses are not stated first before any
data has been collected, which would allow for a rejection of
the hypotheses based on patterns shown by the data. Second,
these ad hoc explanations are infinitely malleable, adapting
indiscriminately to the idiosyncratic characteristics of test
items. As examples, Helms (1997) hypothesized that Black
examinees may fail the Wechsler Intelligence Scales Arithmetic
items because of substandard training in school, may fail
Comprehension items due to “exposure to racism”, and may fail
Digit Symbol items because they are “uncomfortable with
pencils as a tool” (p. 522).

1.2. Theory-based explanations: Spearman's hypothesis

Charles Spearman (1927) initially observed that race
differences should be “most marked in just those [tests]
which are known to be saturated with g [general intelligence]”
(p.379). Jensen (1980) later named this Spearman'’s hypothesis
(SH). There are three levels of SH that Jensen (1998, 2001)
called the strong form, weak form, and the contra hypothesis.
The strong form posits that any observed race differences in
test's mean scores are solely a function of g. The weak form
posits that while race differences in test score means are mainly
a function of g, lower-order factors or subtest specificities also
contribute to the difference. The contra hypothesis holds that
observed mean score differences are independent of g, being
solely a function of lower-order factors or test specificity.

Support for SH has been borne out from numerous
independent studies based on large child and adult samples
(e.g., Jensen, 1985, 1998) and comprising many different
psychometric tests, such as the Armed Forces Qualification
Test (Nyborg & Jensen, 2000), the Kaufman Assessment Battery
for Children (Naglieri & Jensen, 1987), the Wechsler Intelli-
gence Scale for Children-Revised (Jensen & Reynolds, 1982;
Naglieri & Jensen, 1987; Rushton & Jensen, 2003), and tests for
college/graduate school admissions, job selection, and the
military (Roth, Bevier, Bobko, Switzer, & Tyler, 2001).

There has been some disagreement about interpreting the
SH literature. Schdnemann (1997) interpreted the literature as
being supportive of the weak form of SH. In contrast, Rushton
(2003) concluded that most studies supported the strong form
of SH.! Summarizing his own work from 17 independent data

T Rushton (1998) proposed that the term Jensen Effect be used whenever
there is a substantial correlation between g loadings and any other variable.

sets that included scores from 149 different tests obtained on
samples of 45,000 Black and 245,000 White examinees, Jensen
(2001) found that the correlation between Black-White
differences and g was between .57 and .62. More recently,
Dragt (2010) performed a meta-analysis of SH studies and
found an average correlation of .85 between g and mean group
test score differences between Black and White respondents.

1.2.1. Interpretation of Spearman’s hypothesis using tests of memory

While Jensen's (Jensen & Figueroa, 1975; Jensen & Osborne,
1979) initial interest in SH began with tests of memory, little
work has been done examining Black-White differences in
memory measures. What has been done is mostly incidental
(ie., one or two memory subtests in an intelligence test
battery), but it tends to indicate both that memory tasks have
smaller g loadings than other tasks on multi-test cognitive
batteries and that Black-White differences in mean scores are
either considerably reduced on such tests (Jensen, 1980, 1985)
or that average score for the Black sample is higher than the
average for the White sample (Jensen & Reynolds, 1982). For
example, in one of the few studies that examined Black-White
differences in a battery of memory tests, Mayfield and Reynolds
(1997) found a consistent factor structure across both groups.
The Black sample scored higher than the White sample on most
of the memory tests, although the difference was small.

1.3. Empirical challenges to interpretations of Spearman's
hypothesis (SH)

Helms-Lorenz, Van de Vijver, and Poortinga (2003) have
argued that the constructs of cognitive complexity and verbal/
cultural loading are confounded in attempts to properly interpret
results from tests of SH. They administered two intelligence
batteries and a computer-assisted elementary cognitive test
battery to a large group of Dutch and second-generation migrant
6-12 year old children living in the Netherlands. In addition to
using factor analysis to compute the subtests' g loadings, they
gave all subtests two ordinal ratings of “cognitive complexity.”
One cognitive complexity rating was based on both Carroll's
(1993) cognitive abilities model while the other corresponded to
the minimal developmental level needed for successful accom-
plishment (Fischer, 1980). The cultural loading of subtest content
was rated on an ordinal scale by psychology students, and
another rating of each subtest's verbal loading was operational-
ized as the number of words in the subtest. The authors found
that the size of group differences on the intelligence tests was
better predicted by the “cultural” variables than by the cognitive
complexity variables.

Although Helms-Lorenz et al. (2003) used an intriguing
methodology for investigating the relationship between factor-
analytically derived subtest g loadings and human ratings of
subtest task characteristics, there are a number of unresolved
issues that challenge their conclusions. The first problem
concerns confusion in what Jensen (1998) called the “vehicles
of g” versus the g construct itself (Jensen, 1998, p. 309). For
example, cultural differences would not explain why a Forward
Digit Span Task and a Backward Digit Span Task would show
widely discrepant g loadings, despite similarities in the surface
characteristics of these tests (particularly in their nonverbal
content). In addition, the composition of the comparison
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groups that Helms-Lorenz et al. used may play a role in their
findings. Jensen (1998) wrote:

Each test score reflects both the level of g and the properties
of the vehicle of g (the latter being largely unrelated to g).
One would predict, for example, that the g factor, which is
highly and equally loaded in batteries of verbal and
nonverbal tests when given to monolingual children, would
have much smaller g loadings on the verbal tests (given in
English) than on the nonverbal tests when that battery is
given to bilingual children. For the bilingual group the
verbal tests would reflect the degree of second-language
acquisition more than they would reflect g (p. 310).

Although the groups studied in the Helms-Lorenz et al.
(2003) research are reported to have been exposed to the same
number of (age appropriate) years of Dutch education, they
also state “there is evidence that substantial differences in
knowledge of the Dutch lexicon between the majority-group
pupils and migrant pupils remain throughout the primary
school period, even for second-generation children” (pp. 14-
15). In the majority of studies that have evaluated SH, the
comparison groups are comprised of native-born participants
(e.g., American blacks and whites). In these studies, the
comparison groups are more “culturally homogeneous” than
those in the Helms-Lorenz et al. (2003) study where the
migrant students' parents were born in at least five different
countries.

1.4. Methods used to test for Spearman's hypothesis

There are two common methods currently employed to
assess SH: correlated vector (CV) analysis, and multi-group
confirmatory factor analysis (MG-CFA).

1.4.1. Correlated vector method

A correlated vector (CV) analysis attempts to explain
variability in the magnitude of group differences on various
tests (or subtests) by correlating the g loading of the tests with
the size of group differences in mean scores on the same tests. A
CV analysis typically involves the following steps: (a) conduct
an exploratory factor analysis (EFA) of the tests in representa-
tive samples of the different comparison groups, separately;
(b) estimate the similarity (ie., congruence) of the factor
loadings between groups; (c) if the factors are similar, then
conduct the EFA in the combined sample; (d) correct each test's
g loading for unreliability; (e) standardize the differences in
mean scores between the groups; (f) correct each standardized
group difference for unreliability; and (g) calculate the
correlation (either Pearson or Spearman) between the
corrected standardized group differences and the corrected g
loadings (Jensen, 1985, 1992, 1998). A positive correlation
indicates that tests with higher g loadings have larger group
differences in mean test scores. There is no agreed-upon
correlation value that differentiates the strong and weak
forms of SH, however, hence support for g's role in determining
group differences can vary greatly between studies (Dolan,
Roorda, & Wicherts, 2004).

1.4.1.1. Criticisms of the correlated vector method. Scholars have
leveled a number of criticisms against the use of a CV analysis to

investigate SH (Ashton & Lee, 2005; Mulaik, 1992; Schénemann,
1997). For example, Colom and Lynn (2004) argued that subtest
g loadings are heavily influenced by the nature of the other
subtests included in the battery (see Jensen & Weng, 1994),
hence comparing CV studies that have used different instru-
ments to evaluate g may be problematic. Dolan and Hamaker
(2001) argued that the CV procedure does not adequately assess
model fit, thus the factor model used to obtain g loadings may
not be the best way to explain the tests' covariances. Dolan
(2000) opined that making a persuasive argument for g as the
main contributor to any group differences requires comparing
competing models, with the models ascribing a central role to g
fitting the data better than the models that do not ascribe such a
role to g.

From a somewhat different perspective, Dolan and col-
leagues (Dolan, 2000; Dolan & Hamaker, 2001; Dolan & Lubke,
2001; Lubke, Dolan, & Kelderman, 2001) argued that the
correlations obtained in a CV analysis are difficult to interpret
with any degree of specificity, as the method assumes that the
tests are at least strongly invariant across the comparison
groups. Strong invariance signifies that any observed group
differences in mean test scores are due to group differences in
the constructs that the tests are measuring, not differences in
how the test measures the construct across groups (i.e., test
bias). Thus, if the invariance assumption cannot be established,
then between-group differences may be attributable, at least in
part, to differences in how the tests measure their intended
constructs. Even if invariance holds across groups, when the
tests measure multiple factors (e.g, Wechsler scales), CV
analysis could mask group differences in lower-order/
domain-specific latent variables by implying that the differ-
ences are only due to g.

1.4.2. Multi-group confirmatory factor analysis method

The multi-group confirmatory factor analysis (MG-CFA)
procedure for assessing group differences involves conducting a
confirmatory factor analyses (CFAs) simultaneously on separate
data from two or more comparison groups (Harrington, 2009).
MG-CFA is a well established method for investigating group
differences in the latent means and (co)variances estimated
from a latent variable model (Millsap, 2011). Moreover, MG-CFA
has a number of advantages over a CV analysis for testing SH
(Dolan, 2000; Gustafsson, 1992; Horn, 1997; Millsap, 1997).

First, MG-CFA allows for a more integrated and elegant
investigation of the various steps involved in the CV analysis.
Specifically, MG-CFA requires fitting a single latent variable
model in all groups simultaneously using the group-specific
data. Then, in a systematic fashion the model parameters are
constrained to be the same across groups, starting with the
factor structure (configural invariance), then the loadings (weak
invariance), and then the intercepts (strong invariance). Some
(e.g., Lubke, Dolan, Kelderman, & Mellenbergh, 2003) have
advocated a need for assessing the equality of the residual
variances, too (strict invariance), but there is no universal
agreement on this (Little, Card, Slegers, & Ledford, 2007). If the
loadings and intercepts (i.e., the predicted mean of the
observed test for a given level of the latent variable) are the
same across groups, then the between-group differences on the
measured test scores are only due to between-group differ-
ences in the latent means, as opposed to measurement bias
playing a role in the observed differences. If the residual
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variances are invariant as well, then the reliability with which
the test scores measure the latent variables is the same across
groups (Raykov, 2004).

Second, the hypothesis of strong factorial invariance—a
necessity for meaningful interpretation of group differences—is
tested explicitly in MG-CFA. The CV method assumes strong
invariance, but only assesses for weak invariance via loading
congruence; moreover, this assessment is done in an ad hoc
fashion.

Third, MG-CFA can compare models that have different
constraints on the model parameter between groups and then
use measures to compare how the models fit the data. In the
context of SH, this can be advantageous for testing models that
include g in a central role in explaining group differences
against competing models in which g does not play a central
role in explaining group differences.

1.5. Using multi-group confirmatory factor analysis to examine
Spearman'’s hypothesis

Some investigations of SH have used MG-CFA. Dolan (2000)
applied MG-CFA to standardization data for the Wechsler
Intelligence Scale for Children-Revised (WISC-R), which Jensen
and Reynolds (1982) previously analyzed using the CV
approach. Dolan found support for strict invariance between
Black and White groups, lending support to the notion that the
WISC-R's subtest scores reflected unbiased measurement. They
were equivocal about the prominence of g causing the group
differences, however, because the first- and higher-order factor
models that they used to represent the different forms of SH fit
the data similarly.

Dolan and Hamaker (2001) used MG-CFA to re-analyze
Naglieri and Jensen's (1987) WISC-R and Kaufman Assessment
Battery for Children (K-ABC) data. Like Dolan (2000), they
found support for strict factorial invariance between Black and
White groups. Also like Dolan, they fit multiple first- and
higher-order factor models to represent the different forms of
SH and could not determine what one fit the data best. Thus,
they were equivocal about g's influence on the observed group
differences in the test scores. Although Naglieri and Jensen
found a CV-based correlation of .75 between g and the
magnitude of Black-White differences, Dolan and Hamaker
concluded that the “repeated demonstration of a positive and
large Spearman correlation is a necessary, but not a sufficient
condition for inferring the correctness of Spearman's hypoth-
esis” (p. 33).

Not all MG-CFA studies of SH have found support for
invariance. For example, Dolan et al. (2004) reanalyzed data
from two SH studies (Lynn & Owen, 1994; te Nijenhuis & van
der Flier, 1997) that used the CV approach. For both datasets,
Dolan et al. did not find evidence for strong invariance and
concluded that no form of SH could be inferred from either
dataset.

Despite the advantages of the MG-CFA method, this method
also has critics. For example, Woodley, te Nijenhuis, Must, and
Must (2014) argued that MG-CFA requires large datasets, so
studies of SH that used small datasets “simply cannot be
analyzed, hence the information contained in them is lost for
the purposes of accumulation” (p. 30). Second, MG-CFA cannot
be used for a meta-analysis of SH because most studies do not
report sufficient information (ie., within-group means,

correlations, and standard deviations). Consequently, they
argue that the CV approach is better for examining SH—at
least when meta-analytically combing data from multiple
studies.

1.6. Factor models used to test Spearman'’s hypothesis

Studies that have examined SH fall into two groups: those
that use a MG-CFA approach and those that use a CV approach.
The MG-CFA studies all used a higher-order factor model to
represent g. Studies that used CV measured g in a variety of
ways, ranging from the first component of a principal
components analysis, to the first unrotated factor from an
EFA, to the general factor extracted from Schmid and Leiman's
(1957) orthogonal transformation. We contend that none of
these are the optimal way to model g for an investigation of SH.

1.6.1. Higher-order factor models

To explain factor models, we use Carroll's (1993, 1996)
strata terminology and conceptualization. At Stratum [ are
narrow factors, which influence a homogenous group of
intellectual tasks. There are many factors at Stratum I, some
examples of which are Inductive Reasoning, Lexical Knowl-
edge, and Working Memory. At Stratum II are approximately
10 broad factors, which influence a wider range of intellectual
tasks than Stratum I factors. Some examples of Stratum II
factors are Fluid Reasoning and Comprehension Knowledge. At
Stratum III is the single g factor, which influences a greater
range and diversity of intellectual tasks than any other factor.

The difference between the strata is breadth of content. This
is because the presence of factors at a given strata depends on
the data being analyzed. If the variables are sufficiently diverse,
then g will likely be present; with datasets containing variables
with homogenous content (e.g., alternate forms of a single
test), typically only Stratum I factors are present. For the
current study, we only focus on Stratum II and Stratum III
because factors derived from individually-administered tests of
cognitive ability can typically be classified at one of those strata
(Carroll, 1995).

To date, the studies that have examined SH using the MG-CFA
approach have all used a higher-order factor (HOF) model
(Dolan, 2000; Dolan & Hamaker, 2001; Dolan et al., 2004; Lubke
et al,, 2001). HOF models of cognitive ability define g as a single
Stratum Il (second-order) factor that explains all the common
variance among the Stratum II (first-order) factors (see Fig. 1a).
The observed test scores have three direct influences: Stratum II
factors, test-specific factors, and measurement error. The test-
specific factors typically cannot be distinguished from measure-
ment error, so they are amalgamated into a single residual term
that is uncorrelated with all other factors.

In HOF models, g directly influences all the Stratum II factors.
To the extent that g is highly correlated with a Stratum II factor,
higher levels of g produce higher levels of the Stratum II factor. g
does not directly influence the observed test scores. Instead, g's
influence on the tests is mediated by the Stratum II factors.

Stratum II factors can be decomposed into two components
in HOF models: the part due to g and the part independent of g.
The part that is independent of g is the Stratum Il-specific
factor, which explains individual differences in the ability that
the Stratum I factor represents beyond what g can explain. Like
the test-specific factors, the Stratum II-specific factors are
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(a) Higher-order factor model. a is a second-order (Stratum Ill) factor loading; b, ¢, and d are first-
order (Stratum II) factor loadings; and e is Fluid Reasoning's Stratum ll-specific variance.

(b) Bi-factor model.

Fig. 1. Intelligence factor models. Test-specific/error variances are not shown for space considerations. While the meaning of the Stratum II factors changes from Model
1a to Model 1b, we have kept the names the same to aid in comparing the two models.
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residuals and are typically uncorrelated with all other variables.
The total variance of a Stratum II factor, then, is an amalgam of
the variance attributable to g and that attributable to Stratum
[I-specific factors.

1.6.1.1. Problematic issues associated with higher-order factor
models. There are multiple drawbacks of HOF factor models
when studying a multidimensional trait such as intelligence
(Chen, Hayes, Carver, Laurenceau, & Zhang, 2012; Gignac,
2007). In these models, g does not directly influence the test
scores. Thus, its influence on the test scores is limited by how
well the test scores measure the Stratum II factors. Fig. 1a
illustrates this principle. The relationship between g and V1 can
be calculated using the tracing rules for a path model (Loehlin,
2004). Specifically, the relationship is calculated by multiplying
V1's loading on Fluid Reasoning by Fluid Reasoning's loading on
g (ie,bxa).If b= .30and a = .50, then the magnitude of g's
relationship to V1is.30 x .50 = .15. If b increases to .65, then g's
relationship with V1 increases to .65 x .50 = .33.

Another drawback of HOF models is that they impose
proportionality constraints (Yung, Thissen, & McLeod, 1999).
Specifically, for a given set of tests influenced by the same
Stratum II factor, the ratio of the test scores' variance due to the
Stratum II factor to the variance attributable to g is constrained
to be the same.

Proportionality constraints can be a challenge to under-
stand clearly, so we follow Beaujean, Parkin, and Parker's
(2014) explanation using Fig. 1a. We previously showed how
to calculate the relationship between g and V1 using tracing
rules. We can use the same tracing rules to compute the
influence of Fluid Reasoning's Stratum Il-specific factor on V1.
Specifically, multiply V1's loading on Fluid Reasoning by the
standard deviation of Fluid Reasoning's Stratum II-specific
factor (e.g., b x v/e). The ratio of g's indirect influence on V1 to
the influence of Fluid Reasoning's Stratum II-specific factor on
V1 is exactly the same for the other observed test scores that
Fluid Reasoning influences: V2, and V3. Specifically,

bxa cxa dxa

bxve cx+e dxie

These forced proportional loading patterns can be prob-
lematic. First, the constraints cause multicollinearity problems
when using both g and Stratum II factors as predictor variables
(Beaujean et al, 2014). Second, it is unlikely that such
constraints occur in a population (Schmiedek & Li, 2004).
Although some have empirically assessed the tenability of
proportionality constraints and not found them problematic
(e.g., Dolan & Hamaker, 2001), Mulaik and Quartetti (1997)
argued that the sample sizes needed for such investigations are
much larger than what is typically used in SH investigations.
Third, proportionality constraints confound g and Stratum II
factors in HOF models because the second-order factor
structure is just a re-expression of the Stratum II factors
correlations (Reise, 2012). A combination of the last two issues
could possibly explain why previous SH studies found
equivalent fit between HOF models and oblique first-order
models, and, subsequently, could not determine if group
differences were due to g or Stratum II factors.

These criticisms apply just as well to any transformation of
HOF model such as the one developed by Schmid and Leiman

(1957). While the Schmid-Leiman transformation can aid in
the interpretation of higher-order model's Stratum II factors, it
does not release the proportionality constraints. It is only
through a bi-factor model that the Stratum II factors' con-
straints on g are released.

1.6.2. Schmid-Leiman transformation (SLT)

Schmid and Leiman (1957) developed a matrix transfor-
mation that some use with higher-order models to calculate all
the direct and indirect influences on the indicator variables
simultaneously (Reynolds & Keith, 2013). Another use of the
Schmid-Leiman transformation (SLT) is to combine the results
from an EFA on observed test scores (i.e., first-order EFA) that
have oblique (correlated) factors and an EFA of the correlated
factors (i.e., second-order EFA; Gorsuch, 1983). In either case,
the SLT produces g loadings for the observed test scores via the
technique discussed in Section 1.6.1.1.

In the SLT, the common variance among all the test scores is
represented as a general factor, while narrower domains are
represented as residual Stratum II factors. Consequently, the
Stratum II factors are orthogonal to each other as well as to the
general factor. Thus, Stratum II factors from a SLT do not have
the same interpretation as those from a Stratum II EFA with an
oblique rotation. In the oblique rotation, the Stratum II factors
reflect variance from both g and the Stratum II factors, whereas
in the SLT the Stratum II factors only reflect variance at the
Stratum II factor level that is unexplained by g (Reise, 2012).
Despite the differences in factor construction, the convention
has been to call Stratum II factors by the same name regardless
of how they were formed (e.g., Carroll, 1996).

1.6.2.1. Problems with the Schmid-Leiman transformation. There
are two major problems with the SLT. First, the direct factor
loadings produced by the SLT are merely a re-expression of the
correlations among the Stratum II factors. Thus, the factor
loadings of an EFA with correlated Stratum II factors and a SLT
of the EFA's factor loading are equivalent (Schmid, 1957); the
same can also be said for the loadings from a higher-order CFA
and a SLT of those loadings (Yung et al., 1999). Consequently, the
SLT does not do away with the proportionality constraints in a
HOF model and imposes the constraints on the second-order
EFA.

A second major problem of the SLT occurs when there are
cross-loadings (i.e., some of the observed tests load onto more
than one Stratum II factor), which are not uncommon with
individually-administered intelligence tests (Weiss, Keith, Zhu,
& Chen, 2013a, 2013b). In such situations, the SLT will
overestimate the g loadings and underestimate the Stratum Il
factor loadings (Reise, Moore, & Haviland, 2010). Larger
Stratum II cross-loadings produce larger amounts of the over-
or underestimation (Reise, 2012).

1.6.3. Bi-factor models

The bi-factor model (Holzinger & Swineford, 1937), some-
times called a direct hierarchical or nested-factors model, offers
an alternative to both the HOF in the MG-CFA approach and the
second-order EFA in the CV approach.?

2 Technically, the bi-factor model is a generalization of the HOF model
(Gignac, 2008; Yung et al., 1999), but we consider them as two distinct models.
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1.6.3.1. Bi-factor model for confirmatory factor analysis. An
example of a bi-factor (BF) model is shown in Fig. 1b. In this
model, all factors have a direct influence on the tests.
Consequently, higher levels of g and higher levels of the
Stratum II factors are both directly associated with higher
scores on all the tests (assuming positive loadings). The
difference between g and Stratum II factors is that while g is
thought to influence every test, the Stratum II factors only
influence a subset of the tests. Test-specific factors and
measurement error also influence the tests in the BF model.
As with the HOF model, the test-specific factors' influence is
typically indistinguishable from influence due to measurement
error so they are represented as a single residual term that is
uncorrelated with any other factor.

BF models have advantages over the HOF (Chen, West, &
Sousa, 2006). First, unlike the HOF, the BF model forms the
Stratum II factors from the covariance remaining after
accounting for g, making the Stratum II factors independent
of g (i.e., are all uncorrelated). Thus, the BF model produces a
direct estimation of the relationship between the observed
tests scores and Stratum II-specific factors. Second, the BF
model allows the tests' factor loadings on both g and the
Stratum II factors to be estimated without any proportionality
constraints.

A third advantage of the BF model is that is allows for direct
assessment of measurement invariance in both g and the
Stratum II factors. In HOF models, non-invariance of a Stratum II
factor would automatically produce non-invariance in g.
Fourth, the BG model allows for a direct comparison of mean
differences between groups on Stratum II factors independent
of g. These last two advantages are particularly salient when
examining SH. If there is at least strong invariance in g and the
Stratum II factors, then the BF model allows for a simultaneous
investigation of the strong, weak, and contra forms of SH.

Specifically, support for the strong form of SH would come
from there being no differences in the latent mean of the
Stratum II factors, but there being a difference in the latent
mean of g. Conversely, support for the contra hypothesis would
come from there being differences in the latent mean of the
Stratum II factors but no difference in the latent mean of g. If
there were differences in the latent means of both g and the
Stratum 1I factors, then this would provide evidence of the
weak form of SH.

1.6.3.2. Bi-factor rotations for exploratory factor analysis. Recent-
ly, two bi-factor methods have been developed for EFA. The
first is bi-factor target rotations (Reise, Moore, & Maydeu-
Olivares, 2011). The basic idea is to extract factors as usual in an
EFA, specify a factor pattern matrix to use for factor rotation,
and then rotate the factors to minimize the difference between
the estimated factor loadings and the specified elements of the
target factor loadings. For more information on target rotation,
see Browne (2001).

The second BF method for EFA is an analytic rotation
(Jennrich & Bentler, 2011, 2012). Here EFA is done as usual,
only the factors are rotated such that all the tests load on the
first factor and the remaining factors are rotated in such a way
to encourage perfect cluster structure (ie. the tests have
substantial loadings on only one factor). The first factor is the
general factor and is uncorrelated with the other factors. The

remaining factors can either be correlated or uncorrelated with
each other.

1.7. Purpose of the current study

The purpose of the current investigation is to test SH using
BF models and both CV and MG-CFA approaches. To do this, we
used Black and White adults' scores from the co-normed
Wechsler Adult Intelligence Scale-Fourth Edition (Wechsler,
2008a) and Wechsler Memory Scale-Fourth Edition (Wechsler,
2009) standardization data.

Based on our review of the SH literature, we expect to find
support for the weak form of SH in this dataset. The reason is
that the dataset contains tests that have both high and low g
loadings and oversamples tests of memory. Thus, group
differences in the test scores are likely due to group differences
in both g and Stratum II factors. If our hypothesis is correct, the
CV analysis will produce a moderately sized positive correla-
tion between the tests' g loadings and the size of Black-White
test score differences. In the MG-CFA analysis, support for the
weak form of SH would come from mean differences in g
favoring the White sample, but small or no group differences in
non-memory Stratum II factors. Mean differences on any
memory factors should either show no Black-White difference
or, if a difference exists, favoring the Black sample (as
suggested from previous research).

2. Method
2.1. Materials

2.1.1. Wechsler Adult Intelligence Scale-Fourth Edition

The Wechsler Adult Intelligence Scale-Fourth Edition
(WAIS-IV; Wechsler, 2008a) is an individually administered
battery designed to assess cognitive ability in individuals
between the ages of 16-90 years. The WAIS-IV consists of 10
primary subtests (Vocabulary, Information, Similarities, Digit
Span, Arithmetic, Block Design, Matrix Reasoning, Visual
Puzzles, Coding, and Symbol Search). The primary subtests
yield four Index scores (Verbal Comprehension, Perceptual
Reasoning, Working Memory, and Processing Speed) and an
overall Full-Scale IQ. The average internal consistency reliabil-
ity of WAIS-IV subtests ranged from .78 for to .94 (Wechsler,
2008b).

2.1.2. Wechsler Memory Scale-Fourth Edition

The Wechsler Memory Scale-Fourth Edition (WMS-IV;
Wechsler, 2009) is an individually administered battery
designed to assess a variety of memory abilities, such as
working memory, learning, immediate and delayed recall, and
recognition of information. There are both verbal and visual
tasks are presented in verbal and visual modalities, and was
standardized on individuals between the ages of 16-90 years.
Not counting the Brief Cognitive Status Exam, the subtests
include Logical Memory (recall for a short story); Verbal Paired
Associates (recall for related and unrelated word pairs);
Designs (recall of spatial locations and visual details); Visual
Reproduction (recall of geometric designs); Spatial Addition
(ability to manipulate visual-spatial information in working
memory); and Symbol Span (ability to manipulate designs in
working memory). The average internal consistency reliability
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of these subtests ranged from .82 to0 .97 (Wechsler, Holdnack, &
Drozdick, 2009).

2.2. Participants

Participants were members the WAIS-IV and WMS-IV co-
normative sample, which is made up of adults aged 16 through
90 years. The sample closely matched the 2005 census on
gender, age, race/ethnicity, parent education level, and geo-
graphic region. For more information about the sample, see
Wechsler et al. (2009). There were 1250 total respondents,
1015 of whom identified as either Black (n = 180) or White
(n = 835). Only the Black and White respondents were used
for this study. Descriptive statistics for the subtest scores are
given in Table 1.

2.2.1. Missing data

There were 737 respondents with no missing data on
any of the WAIS-IV subtests, 1 respondent missing a score
on the Picture Completion subtest, 1 respondent missing a
score on the Cancellation subtest, and 276 respondents
missing data on the Figure Weights, Letter-Number
Sequencing, and Cancellation subtests, almost all of whom
were age 70 or above. There were 700 respondents with no
missing data on any of the WMS-IV subtests and 315
missing data on the Designs and Spatial Addition subtests,
all age 70 or above.

There were 699 respondents with no missing data on the
WAIS-IV or WMS-IV subtests, 1 respondent missing only the
score on the Cancellation subtest, 38 respondents missing data
on only the Designs and Spatial Addition subtests, and 1
respondents missing data on the Picture Completion, Designs,

and Spatial Addition subtests. In addition, there were 276
respondents missing data on Figure Weights, Letter-Number
Sequencing, Cancellation, Designs, and Spatial Addition sub-
tests, all age 70 or above.

The majority of the missing data are missing due to the
design of the data collection (e.g., planned missingness;
McArdle, 1994). That is, respondents above the age of
70 years were not administered the Figure Weights, Letter-
Number Sequencing, Cancellation, Designs, and Spatial Addi-
tion subtests. While deleting respondents with missing values
on these variables (i.e., only keeping respondents younger than
70 years) would likely not bias the results, we instead chose to
handle the missing data using full information maximum
likelihood (FIML) estimation (Enders & Bandalos, 2001). Unlike
traditional ML estimation, FIML makes use of all the data
available from each respondent so respondents do not have to
be removed from the dataset because they were missing
values.

2.3. Data analysis

We tested SH using two methods, the CV approach
(Method 1) and a MG-CFA approach (Method 2).

2.3.1. Method 1: correlated vector analysis

We followed the steps outlined in Section 1.4.1, with some
modifications. First, we group centered the variables
(i.e., created mean deviation scores separately for the Black
and White groups) before conducting the EFA in the combined
group. Second, as there were missing values in the data, we first
created FIML-based correlation matrices of all the WAIS-IV and
WMS-IV subtests for the Black, White, and combined groups.

Table 1
Descriptive statistics for Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) and Wechsler Memory Scale-Fourth Edition (WMS-IV) subtests.
Battery Subtest n Mean SD Skew Kurtosis
WAIS-IV Block Design 1015 10.22 2.98 0.02 —0.35
WAIS-IV Matrix Reasoning 1015 10.30 3.02 —0.01 —0.50
WAIS-IV Figure Weights 739 10.40 3.02 0.01 —0.30
WAIS-IV Picture Completion 1014 10.14 3.03 —0.22 —0.39
WAIS-IV Symbol Search 1015 10.14 291 0.09 0.05
WAIS-IV Coding 1015 10.17 2.92 —0.03 —0.12
WAIS-IV Cancellation 738 9.99 2.89 0.38 0.20
WAIS-IV Vocabulary 1015 10.30 292 0.13 —-0.14
WAIS-IV Information 1015 10.06 3.05 0.06 —0.50
WAIS-IV Comprehension 1015 1049 3.07 —0.04 —0.22
WAIS-IV Similarities 1015 10.28 2.85 —0.15 0.01
WAIS-IV Arithmetic 1015 10.24 2.85 0.10 —0.42
WAIS-IV Digit Span 1015 10.26 2.80 0.19 —0.02
WAIS-IV Letter-Number Sequencing 739 1039 3.00 0.82 1.47
WAIS-IV Visual Puzzles 1015 10.19 3.05 0.38 —0.46
WMS-IV Logical Memory [ 1015 10.10 3.02 —0.26 —0.24
WMS-IV Logical Memory II 1015 9.95 294 —0.18 0.01
WMS-IV Visual Reproduction I 1015 10.12 3.09 —0.32 0.12
WMS-IV Visual Reproduction II 1015 10.02 3.12 0.13 0.24
WMS-IV Verbal Paired Associates | 1015 9.91 2.98 0.06 —0.24
WMS-IV Verbal Paired Associates II 1015 9.88 3.00 —0.41 —-0.19
WMS-IV Designs | 700 10.11 3.01 —0.06 —0.24
WMS-IV Designs II 700 10.01 3.04 —0.07 0.06
WMS-IV Spatial Addition 700 10.07 3.07 —0.26 —043
WMS-IV Symbol Span 1015 10.07 3.00 —0.03 —0.35
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We used these correlation matrices for the EFAs. To calculate g-
loadings, we used the analytic bi-factor rotation. To assess
factor similarity between the Black and White groups, we
estimated the congruence coefficients (Lorenzo-Seva & ten
Berge, 2006), with values > .95 indicating sufficient similarity
for g and values > .85 indicating sufficient similarity for the
other factors (te Nijenhuis & van der Flier, 2003).

We measured the Black-White standardized difference by
calculating Hedges (1981) effect size (ES) measure, which
expresses the mean difference between groups in standard
deviation units. We used Hedges' ES as it corrects for the slight
bias in the more commonly used d effect measure (Borenstein,
2009). The ES formula is given in Eq. (1).

3 Xy —X,
Es— (1- w —Xp 1
< 4(df)—1) \/(nw—l)sﬁv+(ng—1)$lza v

df

where, X; and Xy, are the mean scaled scores of the Black and
White groups, respectively, sz and s, are the respective
variances for the Black and White groups, and df are the
degrees of freedom calculated as ny, + ng — 2, where n; is the
ith group's sample size.

We conducted the CV analyses using two versions of the
WAIS-IV/WMS-IV data. In the first version, we used all subtests
within both the WAIS-IV and WMS-IV batteries. Due to
statistical problems experienced by previous researchers
using both immediate and delayed versions of the WMS-IV
subtests (see Section 2.3.2), in the second analysis we omitted
the WMS-IV immediate subtests. This second analysis was
conducted in order to compare the results from the CV and MG-
CFA analyses.

2.3.2. Method 2: multi-group confirmatory factor analysis

Independent factor analytic studies of the WAIS-IV
(e.g., Benson, Beaujean, & Taub, in press; Benson, Hulac, &
Kranzler, 2010; Gignac & Watkins, 2013; Nelson, Canivez, &
Watkins, 2013; Niileksela, Reynolds, & Kaufman, 2013; Ward,
Bergman, & Hebert, 2012; Wechsler, 2008b) have shown the
scale to reflect four or five latent variables, mapping onto either
the four WAIS-IV index scores (Verbal Comprehension,
Perceptual Reasoning, Working Memory, Processing Speed)
or the Cattell-Horn-Carroll (Schneider & McGrew, 2012)
theory (Comprehension Knowledge, Visual Processing, Fluid
Reasoning, Short Term Memory, and Processing Speed)
respectively. The difference in factor models between studies
likely comes from whether the model allowed the subtests to
have cross-loadings. Weiss et al. (2013a) argued that the four-
and five-factor models were both sufficient for demonstrating
model fit and full factorial invariance between clinical and
nonclinical samples.

There have been some difficulties in forming CFA models
with WMS data (Wechsler et al., 2009, p. 6). In the WMS-IV,
some subtests require examinees to recall stimuli immedi-
ately after presentation (subtests comprising the Immediate
Index), while other subtests ask examinees to recall this
stimuli after a delayed period of time after which interven-
ing and nonrelated subtests have been administered previ-
ously (subtests comprising the Delayed Index). The difficulty

including both Immediate and Delayed WMS-IV subtests is
that it produces specification errors and inadmissible
parameter estimates (Millis, Malina, Bowers, & Ricker,
1999; Price, Tulsky, Millis, & Weiss, 2002). Thus, most factor
analyses of the WMS-IV data (e.g., Holdnack, Zhou, Larrabee,
Millis, & Salthouse, 2011; Miller, Davidson, Schindler, &
Messier, 2013; Salthouse, 2009), including those in the
WMS-IV technical and interpretive manual (Wechsler et al.,
2009, p. 60), only include one version of these subtests
(usually the delayed) along with the two visual working
memory measures (Spatial Addition and Spatial Span).

There have been a few studies examining the factor
structure of the WAIS-IV and WMS-IV subtests concurrently.
Holdnack et al. (2011) completed the most thorough study,
examining thirteen different models in the 900 participants
from the co-norming sample between the ages of 16-69 years.
They found two models fit the data relatively well. The first
model included seven Stratum II factors (Verbal Comprehen-
sion, Perceptual Reasoning, Processing Speed, Auditory Work-
ing Memory, Visual Working Memory, Auditory Memory, and
Visual Memory) without a g factor. The second model
contained five Stratum II factors (Verbal Comprehension,
Perceptual Reasoning, Processing Speed, Working Memory,
and Long-Term Retrieval) and a higher-order g factor.

Miller et al. (2013) analyzed WAIS-IV/WMS-IV data and
found a model similar to Holdnack et al.'s (2011) five-factor
model. Specifically, they found five Stratum II factors (Verbal
Comprehension, Perceptual Reasoning, Working Memory,
Processing Speed, and Delayed Memory) and a higher-order g
factor fit their data best. Salthouse's (2009) found that a model
with six Stratum II factors and a higher-order g factor fit the
WAIS-IV/WMS-IV analysis best. Four factors were the same as
those from Miller et al.'s and Holdnack et al.'s studies (Verbal
Comprehension, Fluid Reasoning, Working Memory, Process-
ing Speed). The difference is that Salthouse's model splits the
Delayed Memory/Long-Term Retrieval factor into two separate
factors: Verbal Memory, and Visual Memory. Likely, this
difference stems from Salthouse using the immediate version
of the WMS-IV subtests instead of the delayed.

For our MG-CFA study, we used all WAIS-IV subtests and
only the delayed and visual working memory subtests from
the WMS-IV. We chose the delayed subtests over the
immediate tests because those are the ones most commonly
used and are the ones used in the factor analyses reported in
the WMS-IV technical and interpretive manual (Wechsler
et al, 2009). Our investigation differs from previous
investigations in that we used a BF model to extract g and
tested for invariance between the Black and White groups
before evaluating SH.

2.3.2.1. Determining model fit. To determine model fit, we
examined multiple indices (McDonald & Ho, 2002) that
represent a variety of fit criteria (Marsh, Hau, & Grayson,
2005). Specifically, we examined (a) the 2, (b) the comparative
fit index (CFI), (c) root mean square error of approximation
(RMSEA), (d) standardized root mean square residual (SRMR),
and (e) Mcdonald's non-centrality index (Mc). In addition,
following Boomsma's (2000) recommendation we also reported
Akaike's information criterion (AIC) and Schwarz's Bayesian
information criterion (BIC). For all models, we looked for
patterns in the fit statistics, and judged acceptance/rejection of
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the specific model based on the majority of the indices. We used
the following criteria for overall model fit: (a) CFI 2.96 (Yu,
2002); (b) RMSEA <.08 (Browne & Cudeck, 1993; Hu & Bentler,
1999); (c) SRMR <.08, (Hu & Bentler, 1999; Sivo, Fan, Witta, &
Willse, 2006); (d) Mc >.90. While AIC and BIC measure different
aspects of model fit, for both measures smaller values indicate
better approximations of the true model (Markon & Krueger,
2004). When specifically comparing models for invariance,
Meade, Johnson, and Braddy (2008) suggest that changes in CFI
values of .002 and changes in Mc values between .008-.009 are
useful cutoff points.

All analyses were conducted using the R statistical pro-
gramming language (R. Development Core Team, 2014), using
the psych (Revelle, 2012) and lavaan (Rosseel, 2012) packages.
To conduct the EFA, fit the latent variable models, and assess
invariance in R, we followed the steps outlined in Beaujean
(20144, 2014b).

3. Results
3.1. Method 1: correlated vectors

3.1.1. All subtests

We conducted the first step of the CV analyses using all
subtests in the WAIS-IV and WMS-IV co-normed dataset.
Velicer's (1976) minimum average partial (MAP) criterion
suggested 2 factors, while Horn's (1965) parallel analysis
suggested 4-8 factors. We believe that the seven-factor
solution made the most interpretive sense (see Table 2). The
extracted factors consist of g, a Verbal Comprehension factor
(F1), a Logical Memory factor (F2), a Designs factor (F3), a
Verbal Paired Associates factor (F4), a Processing Speed factor
(F5), and a Short-Term Memory factor (F6).

Table 2

We calculated the congruence coefficient (CC) from EFAs
applied to Black and White groups separately. The CC was 1.00
for g and had values >.87 for all the other factors. Since the CCs
were sufficiently high, we combined Black and White samples
and extracted the g loadings from an analytic BF rotation. The
subtest data we used for the correlated vectors (CV) analysis
are given in Table 3. The Pearson correlation between the
corrected g loadings and the corrected Black-White standard-
ized differences was 0.58 (95% CI: 0.53-0.62), while the
Spearman correlation was .62 (95% Cl: .58-.66).

3.1.2. All subtests except WMS-IV immediate

We performed this analysis to mirror the multi-group CFA
we conducted. MAP criterion suggested 2 factors, while parallel
analysis suggested 2-5 factors. We believe that the five-factor
solution made the most interpretive sense (see Table 4). It is
comprised of g, a Comprehension Knowledge factor (F1), a
Processing Speed factor (F2), a Working Memory factor (F3),
and a Visual Spatial Factor (F4).

The CC for g was 1.00, and was >.89 for all the others factors.
Since the CCs were sufficiently high, we combined Black and
White samples and extracted the g loadings from an analytic BF
rotation. The subtest data we used for the CV analysis are given
in Table 5. The Pearson correlation between the corrected g
loadings and the corrected standardized Black-White differ-
ences is 0.57 (95% CI: 0.53-0.61), while the Spearman
correlation is .65 (95% CI: .61-0.68).

3.2. Method 2: multi-group confirmatory factor analysis
3.2.1. Testing assumptions

A major assumption of SEM is that the manifest variables
are multivariate normal (Kline, 2012). All WAIS-IV and WMS-

Results from exploratory factor analysis of all subtests extracting seven factors using the combined sample (n = 1015).

Factor pattern coefficients

Battery Test g F1 F2 F3 F4 F5 F6

WAIS-IV Figure Weights 0.71 0.11 —0.12 —0.03 —0.05 —0.02 0.05
WMS-IV Visual Reproduction I 0.68 —0.06 —0.11 0.11 —0.02 0.04 —0.21
WAIS-IV Visual Puzzles 0.67 —0.06 —0.20 0.00 —0.15 —0.02 —0.14
WAIS-IV Matrix Reasoning 0.66 0.04 —0.15 0.04 —0.07 0.04 0.00
WMS-IV Symbol Span 0.66 0.00 —0.03 0.18 0.02 0.05 0.03
WAIS-IV Block Design 0.65 —0.02 —0.21 0.04 —0.18 0.02 —0.13
WAIS-IV Arithmetic 0.65 0.19 —0.04 —0.04 —0.07 —0.01 0.21
WAIS-IV Digit Span 0.62 0.05 —0.04 0.00 —0.04 0.08 0.55
WAIS-IV Similarities 0.61 0.48 0.03 —0.08 —0.04 —0.06 0.01
WMS-IV Spatial Addition 0.61 0.02 —0.14 0.12 —0.08 0.10 0.07
WAIS-IV Vocabulary 0.59 0.66 0.05 —0.03 0.04 0.00 0.05
WMS-IV Visual Reproduction I 0.59 —0.12 —0.05 0.15 0.03 0.00 —0.20
WAIS-IV Comprehension 0.59 0.52 0.05 —0.02 —0.03 —0.03 0.02
WAIS-IV Information 0.59 0.50 —0.02 —0.06 —0.07 —0.04 —0.05
WMS-IV Verbal Paired Associates I 0.58 —0.02 0.08 0.04 0.68 —0.01 0.01
WMS-IV Logical Memory | 0.58 0.03 0.69 —0.03 0.03 —0.03 0.02
WAIS-IV Letter-Number Sequencing 0.58 0.03 —0.09 —0.02 —0.03 0.03 0.46
WAIS-IV Picture Completion 0.58 0.00 —0.01 0.00 —0.09 0.09 —0.08
WMS-IV Verbal Paired Associates II 0.55 —0.01 0.07 0.03 0.74 —0.03 —0.03
WMS-IV Logical Memory II 0.54 0.02 0.76 —0.03 0.09 —0.01 —0.05
WAIS-IV Coding 0.52 0.00 0.00 0.02 —0.03 0.57 0.08
WAIS-IV Symbol Search 0.51 —0.04 —0.04 0.01 —0.04 0.65 —0.01
WMS-IV Designs | 0.50 —0.04 —0.03 0.74 0.01 0.05 —0.03
WMS-IV Designs 11 0.44 —0.04 —0.02 0.69 0.07 —0.03 0.03
WAIS-IV Cancellation 0.38 —0.10 —0.04 0.11 —0.03 037 0.07

Note. Factors were rotated using analytic bi-factor rotation. Subtests are presented in descending order of their g loadings.
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Table 3
Data used in correlated vectors analysis of all subtests.

Battery Test ES nw ng Corrected ES g Loading Corrected g Loading
WAIS-IV Figure Weights 0.81 590 149 0.86 0.71 0.75
WMS-IV Visual Reproduction I 0.66 835 180 0.69 0.68 0.71
WAIS-IV Visual Puzzles 0.85 835 180 0.91 0.67 0.71
WAIS-IV Matrix Reasoning 0.79 835 180 0.84 0.66 0.70
WMS-IV Symbol Span 0.62 835 180 0.66 0.66 0.70
WAIS-IV Block Design 1.19 835 180 1.27 0.65 0.70
WAIS-IV Arithmetic 0.74 835 180 0.79 0.65 0.69
WAIS-IV Digit Span 0.62 835 180 0.64 0.62 0.64
WAIS-IV Similarities 0.80 835 180 0.85 0.61 0.66
WMS-IV Spatial Addition 0.78 560 140 0.81 0.61 0.64
WAIS-IV Comprehension 0.84 835 180 0.90 0.59 0.63
WAIS-IV Vocabulary 0.80 835 180 0.82 0.59 0.61
WAIS-IV Information 0.78 835 180 0.81 0.59 0.61
WMS-IV Visual Reproduction II 0.49 835 180 0.49 0.59 0.60
WMS-IV Logical Memory | 0.62 835 180 0.68 0.58 0.64
WAIS-IV Picture Completion 0.95 835 179 1.03 0.58 0.63
WAIS-IV Letter-Number Sequencing 0.60 590 149 0.64 0.58 0.61
WMS-IV Verbal Paired Associates | 0.47 835 180 0.49 0.58 0.60
WMS-IV Verbal Paired Associates II 0.46 835 180 0.50 0.55 0.60
WMS-IV Logical Memory Il 0.60 835 180 0.65 0.54 0.58
WAIS-IV Coding 0.74 835 180 0.80 0.52 0.56
WAIS-IV Symbol Search 0.72 835 180 0.80 0.51 0.56
WMS-IV Designs | 0.56 560 140 0.61 0.50 0.55
WMS-IV Designs II 0.43 560 140 0.46 0.44 0.47
WAIS-IV Cancellation 0.38 589 149 043 0.38 043

Note. ES: Hedges' effect size. Ny: White sample size. Np: Black sample size. Corrected: corrected for unreliability. Subtests presented in descending order of their g
loading. Scores from the Black participants were subtracted from the White participants, so a positive ES indicates that the average score from the White group was

higher.

IV univariate subtest skewness values were < 2 and all kurtosis
values were < 7, so were in acceptable limits (West, Finch, &
Curran, 1995). While Mardia (1980) tests of multivariate skew
and kurtosis were larger than expected (b;, = 30.81, by, =

687.85, n = 738, p = 21), a Q-Q plot of the multivariate
distribution does not look markedly different from data plotted
from a known multivariate normal distributions with the same
n, number of variables, and correlation matrix (Andersen,

Table 4

2012). Consequently, we believe that the data approximate a
multivariate normal distribution.

3.2.1.1. Confirmatory factor analysis. Based on our EFA, we
initially fit a bi-factor model with four Stratum II factors (Verbal
Comprehension, Processing Speed, Visual Processing, and
Working Memory). The values for the fit statistics for this
model (BO) are shown in Table 6. The fit measures meet the

Results from exploratory factor analysis of all subtests except the WMS-IV immediate subtests, extracting five factors using the combined sample (n = 1015).

Factor pattern coefficients

Battery Test g F1 F2 F3 F4

WAIS-IV Figure Weights 0.70 0.09 —0.03 0.11 0.15
WMS-IV Symbol Span 0.68 —0.09 0.02 0.06 —0.05
WAIS-IV Matrix Reasoning 0.66 0.01 0.04 0.05 0.16
WAIS-IV Visual Puzzles 0.66 —0.07 —0.01 —0.06 0.32
WAIS-IV Block Design 0.65 —0.02 0.02 —0.04 0.36
WAIS-IV Arithmetic 0.63 0.17 —0.02 0.25 0.10
WAIS-IV Vocabulary 0.63 0.60 0.02 0.02 —0.06
WAIS-IV Similarities 0.63 0.48 —0.03 0.01 0.02
WMS-IV Visual Reproduction II 0.61 —0.19 —0.01 —0.12 —0.06
WAIS-IV Comprehension 0.61 0.50 —0.01 0.00 —0.03
WMS-IV Spatial Addition 0.61 —0.03 0.08 0.11 0.13
WAIS-IV Information 0.61 0.49 —0.01 —0.04 0.09
WAIS-IV Digit Span 0.58 0.00 0.01 0.63 —0.02
WAIS-IV Picture Completion 0.56 0.03 0.11 —0.03 0.11
WAIS-IV Letter—-Number Sequencing 0.54 —0.02 —0.02 0.50 0.03
WMS-IV Verbal Paired Associates II 0.54 —0.08 —0.05 —0.02 —0.38
WAIS-IV Coding 0.51 0.03 0.59 0.04 —0.02
WAIS-IV Symbol Search 0.51 —0.01 0.64 —0.04 0.02
WMS-IV Designs II 0.50 —0.23 —0.07 0.03 —0.11
WMS-IV Logical Memory II 0.48 0.10 0.05 —0.05 —0.36
WAIS-IV Cancellation 039 —0.13 0.34 0.07 —0.01

Note. Factors were rotated using analytic bi-factor rotation. Subtests presented in descending order of their g loading.
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Table 5

Data used in correlated vectors analysis of all subtests except the WMS-IV immediate subtest scores.
Battery Test ES nyw ng Corrected g Loading Corrected

ES g loading

WAIS-IV Figure Weights 0.81 590 149 0.86 0.70 0.74
WMS-IV Symbol Span 0.62 835 180 0.66 0.68 0.73
WAIS-IV Matrix Reasoning 0.79 835 180 0.84 0.66 0.70
WAIS-IV Visual Puzzles 0.85 835 180 0.91 0.66 0.70
WAIS-IV Block Design 1.19 835 180 1.27 0.65 0.69
WAIS-IV Arithmetic 0.74 835 180 0.79 0.63 0.67
WAIS-IV Similarities 0.80 835 180 0.85 0.63 0.67
WAIS-IV Vocabulary 0.80 835 180 0.82 0.63 0.65
WAIS-IV Comprehension 0.84 835 180 0.90 0.61 0.66
WMS-IV Spatial Addition 0.78 560 140 0.81 0.61 0.64
WAIS-IV Information 0.78 835 180 0.81 0.61 0.63
WMS-IV Visual Reproduction II 0.49 835 180 0.49 0.61 0.62
WAIS-IV Digit Span 0.62 835 180 0.64 0.58 0.60
WAIS-IV Picture Completion 0.95 835 179 1.03 0.56 0.61
WMS-IV Verbal Paired Associates II 0.46 835 180 0.50 0.54 0.59
WAIS-IV Letter-Number Sequencing 0.60 590 149 0.64 0.54 0.58
WAIS-IV Symbol Search 0.72 835 180 0.80 0.51 0.56
WAIS-IV Coding 0.74 835 180 0.80 0.51 0.55
WMS-IV Designs Il 043 560 140 0.46 0.50 0.55
WMS-IV Logical Memory II 0.60 835 180 0.65 0.48 0.52
WAIS-IV Cancellation 0.38 589 149 043 0.39 0.44

Note. ES: Hedges' effect size. ny: White sample size. ng: Black sample size. Corrected: Corrected for unreliability. Subtests presented in descending order of their g
loading. Scores from the Black participants were subtracted from the White participants, so a positive ES indicates that the average score from the White group was

higher.

RMSEA and SRMR criteria, but do not meet the Mc criterion and
are at the threshold of the CFI criterion. Examining the residual
correlations and modification indices indicated that we should
include a fifth, Long-Term Retrieval factor, making the model
similar to that used by Holdnack et al. (2011) and Miller et al.
(2013). In addition, we allowed the residuals between the
WAIS-IV Figure Weights and Arithmetic subtests and the
residuals between the WMS-IV Logical Memory and Verbal
Paired Associates subtests to covary. This new model (B1) fit
the data better than the model with four factors, so we used it
for our baseline model. A path diagram of the model is shown in
Fig. 2. In Model B1, not all subtests loaded on Stratum II factors,
indicating that g explained all the covariance between those
subtests and the other subtests in the dataset.

Next, we fit model B1 to the Black and White groups,
separately (B1.B and B1.W, respectively). The model fit slightly
better in the White group than in the Black group, although the
fit is equivalent in most respects. We then assessed for
invariance using the steps listed in Section 1.4.2. The con-
straints involved in the configural model (M1), weak model
(M2), and strong invariance model (M3) did not depreciate the
model fit. In fact, the AIC and BIC that showed the model with
more constraints fit slightly better than the models without
them. Thus, it appears that the factors are comparable across
groups.

To examine strict invariance, we added constraints in two
parts, one for the residual variances and once for the residual
covariances. After constraining the residual variances (M4a),

Table 6

Model fit for combined WAIS-IV and WMS-IV multi-group confirmatory factor models.
Model Description X df p CFI RMSEA SRMR Mc  AIC BIC
BO Baseline: 4 Stratum II factors, all respondents 552.662 173 .00 .961 .05 .035 829 90344 90733
B1 Baseline: 5 Stratum II factors, all respondents 362938 166 .00 .980 .03 .028 908 90168 90592
B1.B Baseline: Model B1, Black respondents 207926 166 .02 980 .04 .040 .890 16010 16285
B1.W  Baseline: Model B1, White respondents 320.091 166 .00 976 .03 .032 912 73958 74364
M1 Configural Invariance 528.017 332 .00 .977 .03 .033 908 89968 90815
M2 Weak Invariance 563.259 368 .00 .977 .03 .038 908 89931 90601
M3 Strong Invariance 591.135 383 .00 .976 .03 .040 903 89929 90525
M4a Strict invariance (variances) 657.701 404 .00 970 .04 .042 .883 89954 90446
M4b Strict invariance (variances, except Designs II) 633.463 403 .00 973 .03 .041 .893 89931 90429
M4c Strict invariance (covariances) 634.47 405 .00 .973 .03 .041 .893 89928 90416
M5 Latent variances 649.64 411 .00 .972 .03 .054 .889 89932 90389
M6 Latent mean differences of all factors 875.523 417 .00 946 .05 126 798 90145 90573
M6a Latent mean differences of Working Memory and Processing Speed 653.614 413 .00 972 .03 .055 .888 89932 90380

constrained to be zero

M7 Latent mean differences of Working Memory, Processing Speed, andg 802278 414 .00 954 .04 .103 .823 90078 90521

constrained to be zero

Note. CFI: comparative fit index; RMSEA: root mean square error of approximation; SRMR: standardized root mean square residual, Mc: McDonald's non-centrality
index, AIC: Akaike's information criterion, BIC: Bayesian information criterion. ngj,cx = 180, nywhite = 835.
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Fig. 2. Bi-factor model of the WAIS-IV and WMS-IV subtests. Subtest specific/error variance terms not shown for space considerations.

the model showed some depreciation in fit. Consequently, we groups. The resulting model (M4b) fit the data better than
examined the modification indices, which indicated that the model M4a, and only slightly worse than model M3. We then
residuals for the Designs II subtests should be freed between constrained the residual covariances (M4c), which did not



92

worsen the model fit. Thus, it appears that the construct
reliabilities for Verbal Comprehension, Visual Processing,
Working Memory, and Processing Speed factors are the same
across groups, and almost the same for g and Long-Term
Memory.

Next, we constrained the latent variables' variances by
fixing all of them to be 1.0 (model M5). While this step is not
required for assessing measurement invariance, it is required to
examine if the groups used equivalent ranges of the latent
variables to respond to the tests. This did not appear to worsen
model fit. The factor loadings from this final model (M5) are
given in Table 7.

Last, we examined the differences in the latent variable's
means. First, we constrained all means to be the same
(i.e., zero) across groups (M6). This model showed an

Table 7
Factor loadings for final model (Model M5) of WAIS-IV/WMS-IV data.
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appreciable depreciation in model fit. Subsequently, we
examined the latent means from model M5 to see if there
were any factors with minimal group differences. The latent
mean differences in the Working Memory and Processing
Speed factors seemed likely due to sampling error as their the
95% Cls contained zero. Consequently, we set these factors'
latent means to be zero for both groups (M6a). This model fits
as well as model M5. We show the latent mean differences for
the factors based on model M6a in Table 8.

As the latent variables do not have an inherent mean, we set
the mean of the Black group to zero and estimated the means in
the White group. Thus, the values in Table 8 show how much
higher (positive value) or lower (negative value) the latent
mean for the White group is from the latent mean of the Black
group. As the variance of the latent variables in both groups is

Factor Subtest Unstandardized estimate SE Standardized estimate
g
Similarities 1.63 0.08 0.60
Vocabulary 1.63 0.08 0.59
Information 1.69 0.09 0.58
Comprehension 1.70 0.09 0.58
Block Design 1.73 0.08 0.64
Visual Puzzles 1.79 0.08 0.63
Picture Completion 1.69 0.09 0.58
Matrix Reasoning 2.03 0.08 0.71
Figure Weights 2.11 0.09 0.73
Digit Span 1.65 0.08 0.61
Arithmetic 1.75 0.08 0.64
Letter-Number Sequencing 1.70 0.09 0.58
Symbol Search 1.53 0.08 0.54
Coding 1.60 0.08 0.56
Cancellation 1.13 0.10 0.40
Logical Memory Il 1.18 0.09 0.41
Visual Reproduction I 1.52 0.10 0.50
Verbal Paired
Associates II 133 0.09 045
Designs II 1.36 0.10 0.56
Symbol Span 1.90 0.08 0.65
Spatial Addition 1.94 0.10 0.65
Verbal Comprehension
Similarities 1.38 0.08 0.51
Vocabulary 1.81 0.07 0.65
Information 1.47 0.08 0.50
Comprehension 1.61 0.08 0.55
Arithmetic 0.49 0.08 0.18
Logical Memory II 0.62 0.10 0.21
Visual Processing
Block Design 143 0.17 0.52
Visual Puzzles 0.89 0.13 0.31
Picture Completion 0.45 0.12 0.15
Visual Reproduction II 0.48 0.14 0.16
Working Memory
Digit Span 2.11 0.36 0.78
Arithmetic 0.45 0.11 0.17
Letter—-Number Sequencing 1.03 0.20 0.35
Processing Speed
Symbol Search 1.77 0.13 0.63
Coding 1.51 0.12 0.53
Cancellation 1.06 0.12 0.37
Long-Term Retrieval
Logical Memory Il 0.64 0.14 0.22
Visual Reproduction II 1.33 0.17 0.44
Verbal Paired Associates II 0.96 0.14 0.32
Designs II 1.07 0.16 0.44
Symbol Span 0.69 0.12 0.24

Note. For all analyses, we used full information maximum likelihood estimation to account for missing data.
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Table 8
Black-White mean differences on latent variables.
95% Cl

Factor Estimate SE Lower Upper
g 1.16 0.10 0.97 1.34
Verbal Comprehension 0.23 0.11 0.01 0.45
Visual Processing 0.80 0.15 0.51 1.08
Working Memory 0 - - -
Processing Speed 0 - - -
Long-Term Retrieval —0.35 0.16 —0.65 —0.04

Note. Estimates came from model M6a (see Table 6). Latent mean differences
for Working Memory and Processing Speed were constrained to zero. For all
latent variables, the variances were fixed at 1.0 and the means for the Black
group were fixed at 0.0. Thus, a positive difference indicates the average score
from the White group was higher, while a negative difference indicates the
average score from the Black group was higher.

one, these mean differences are given in standard deviation
units. The White group is approximately 1.16 SDs higher on g,
0.80 SDs higher on Visual Processing, and .23 SDs higher on
Verbal Comprehension than the Black group. Conversely, the
Black group was 0.35 SDs higher on the Long-Term Retrieval
factor.

Model M6a supports the weak form of SH, so to rule out the
contra hypothesis version of SH, we fit a model that allowed for
mean differences only in Stratum II factors. Here, we estimated
the latent means differences for Verbal Comprehension, Visual
Spatial Reasoning, and Long-Term Retrieval, but constrained
the latent mean differences for g, Working Memory, and
Processing Speed to be zero (model M7). The model fit is
worse than that for model M6a, indicating that subtest
differences are not due to latent mean differences in Stratum
I factors alone.

4. Discussion

Interpretations of the meaning of subgroup differences in
average score performance on cognitive tests have been
plagued by ad hoc “armchair” explanations that have sowed
confusion rather than clarity among practitioners and re-
searchers (e.g., Helms, 1997). The correlated vector (CV)
method was a major step forward in establishing an empirically
based method to both posit and test a coherent, parsimonious
theory—called the Spearman hypothesis (SH)—that explains
these differences (Jensen, 1985). The multi-group confirmatory
factor analysis (MG-CFA) method represents a second step
forward in providing a technique to assess measurement
invariance across comparison groups, as well as provide a
simultaneous test for the strong, weak and contra hypotheses
associated with SH. Studies using MG-CFA have often yielded
equivocal results, which we contend are primarily due to
shortcomings in the way g has been modeled. In this article, we
described how the bi-factor model (BF; Holzinger & Swineford,
1937; Jennrich & Bentler, 2011, 2012) can offer advantages to
both the CV and MG-CFA approaches of examining SH.

We demonstrated the use of the BF model to examine SH in
a large co-normed standardization dataset of scores from the
Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV)
and Wechsler Memory Scale-Fourth Edition (WMS-IV). This
data has the advantage of including a wide variety of mental
tests as well as containing an overrepresentation of memory

tests, which tend to either show minimal race differences or
favor Black respondents (Jensen & Reynolds, 1982; Mayfield &
Reynolds, 1997). Consequently, we expected to find support for
the weak form of SH in this dataset.

Our CV analysis revealed the correlation between Black-
White score differences and g loadings to be approximately .60,
with the Pearson correlation being slightly lower and the
Spearman correlation being slightly higher. As there is no
agreed-upon value that differentiates the strong and weak
forms of SH, we are unsure if this supports the weak or strong
version of SH. It is likely that these findings favor the weak
version of SH because more than half the variance in the score
differences are not accounted for by g.

The results from the MG-CFA also support the weak form of
SH. While there were large mean differences in g, there were
also substantial mean differences in the Visual Processing
factor as well. In addition, there were moderate differences in
the Verbal Comprehension and Long-Term Retrieval factors,
with the latter favoring the Black sample. Thus, while g does
play a part in the score differences between Black and White
participants, it is not the only construct contributing to these
differences.

4.1. Integration with previous literature

Our finding of large Black-White differences in g (1.16 SDs)
and Visual Processing (0.80 SDs) is consistent with other SH
studies. In Jensen's (1998) summary of SH studies, he reported
the largest Black-White differences (favoring Whites) were
found on tests that load highly on both g and a Spatial
Visualization (i.e., Visual Processing) factor. More recently,
Dragt's (2010) meta-analysis of SH studies confirmed Jensen's
findings:

The fact that tests that are heavily loaded on either the
[Visual Processing] factor or [Short-Term Memory] factors
consistently cause small deviations from the result predict-
ed by the strong form of Spearman's hypothesis dictates
that this form must be rejected. The weak form of
Spearman's hypothesis, however, is strongly confirmed.

(p.61).

At the other extreme, our finding of no Black-White
differences in Working Memory and a small difference favoring
the Black respondents in Long-Term Retrieval is consistent
with the SH literature as well (Dolan & Hamaker, 2001; Jensen
& Reynolds, 1982).

As have previous studies of SH (Dolan, 2000; Dolan &
Hamaker, 2001), the results from the MG-CFA indicated that
there was strict invariance for the majority of the WAIS-IV/
WMS-IV subtests. The only exception was the WMS-IV Designs
II subtest, whose error variance was not the same between
groups. Unlike previous studies, however, we were able to
differentiate the effects of g on the group differences from the
effects of the Stratum II factors. Previous MG-CFA studies that
used HOF models were equivocal about whether it was
differences in g, differences in Stratum II factors, or both that
were causing the observed test score differences. Our use of a
bi-factor model enabled us to show that the observed test
scores were due to differences in g as well as differences in
Stratum II factors (Visual Processing, Verbal Comprehension,
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and Long-Term Retrieval). That is, our study confirmed the
weak form of SH, consistent with Jensen's (1998) interpreta-
tion of the SH data.

4.2. Final thoughts on comparing approaches to investigating SH

4.2.1. Comparison of results from the current study

Our study revealed noteworthy similarities between the CV
and MG-CFA approaches used to investigate the SH when using
a BF model to represent g. Both approaches showed that g was
estimated invariantly in both the Black and White groups as
well as showed large Black-White differences on g. The CV
analysis yielded a correlation between Black-White differences
and g between 0.58 (Pearson) and 0.62 (Spearman), while the
MG-CFA analysis yielded difference in the latent mean of g of
1.16 SDs.

There were some noticeable differences between the CV
and MG-CFA approaches as well. First, the MG-CFA was able to
uncover more nuanced information than the CV analysis.
Specifically, the MG-CFA not only found differences in g, but
also found group differences in Visual Processing (0.80 SDs
favoring the White sample), Verbal Comprehension (0.23 SDs
favoring the White sample), and Long-Term Retrieval factors
(0.34 SDs favoring the Black sample). Second, the MG-CFA
found the construct reliability estimates to be very similar
between the groups for all the factors, an issue the CV method
does not even attempt to address. Third, while both the CV and
MG-CFA approaches showed large Black-White differences on
g, the magnitude of the difference is somewhat larger for the CV
analysis than the MG-CFA. Specifically, the d effect sizes that
correspond to the correlations from the CV approach are 1.42
(Pearson) and 1.58 (Spearman).

4.2.2. Preferred method for assessing Spearman's hypothesis

The results from our study are in agreement with those
from Dolan and his colleagues (Dolan, 2000; Dolan & Hamaker,
2001; Dolan et al., 2004; Lubke et al., 2001) showing that the
MG-CFA approach to testing SH is typically better than using
CV. First, the MG-CFA approach is better able to test the
assumptions inherent in SH than the CV approach. Second, by
using a BF approach to using a CFA model, the approach can
provide more information about the nature of the between-
group differences. For example, the BF MG-CFA approach
allows for an assessment of group differences in g and the
Stratum II factors simultaneously. Thus, it allows for a direct
investigation of the strong, weak, and contra forms of SH. Third,
although seldom discussed in the SH literature (however, see
Irwing, 2012), the BF MG-CFA approach allows for an
assessment of construct reliability differences between groups,
for both g and the Stratum II factors. The current study found
strict invariance for all the subtests (except Designs II) as well
as invariance in the latent variances. Thus, not only are the
between-group construct reliabilities nearly identical, but both
groups used equivalent ranges of the latent variables when
responding to the test questions. Where strict invariance not
found, however, then we could have followed the MG-CFA with
an investigation of the reliability of the measured constructs
(Reise, Bonifay, & Haviland, 2013).

Despite the number of benefits the MG-CFA approach has
over the CV approach, the CV approach to assessing SH (or
differences between any groups) is still quite common.

Critiques of the CV method were issued over 15 years ago
(e.g., Ashton & Lee, 2005; Dolan, 2000; Millsap, 1997), yet the
method is still used. If the CV method is going to continue to be
used, further work needs to be done to determine what level of
the correlation between g and the differences in test scores is
required for support of the strong vs. weak vs. contra forms of
SH. The current lack of agreed-upon values has caused a variety
of correlation values to be interpreted as evidence supporting
g's role in determining group differences (Dolan et al.,, 2004). A
Monte Carlo study could be useful here. Specifically, after
simulating data from strong, weak, and contra forms of SH, the
magnitude of the correlations from a CV analysis of all the data
sets could be compared to give an idea about benchmarks for
support of each level of SH.

4.3. Bi-factor versus higher-order models for testing Spearman's
hypothesis

All prior studies that have compared the CV and MG-CFA
methods for evaluating the SH have used a higher-order factor
(HOF) model. In contrast, we used a BF model and, to our
knowledge, are the first to compare CV with a MG-CFA using a
BF model's representation of g and the Stratum II factors.

If g were the only concern in testing SH, then it might not
make much of a difference whether a BF or HOF model was
used (Jensen & Weng, 1994). SH does not focus solely on g,
however, because the weak and contra forms also considers the
influence of Stratum II factors. In the HOF model, Stratum II
factors are comprised of two independent components: the
part that is due to g and the part that is independent of g. In the
BF model, Stratum II factors are defined as constructs that
influence a set of observed tests scores independent of the
influence of g (Chen et al., 2006). Thus, Murray and Johnson
(2013, p.420) concluded, “If ‘pure’ measures of specific abilities
are required then bi-factor model factor scores should be
preferred to those from a higher-order model.”

4.3.1. A bi-factor model of intelligence

Some may question whether a BF model is an appropriate
representation of intelligence. HOF models have been used so
often in the field and some argue that they have a stronger
theoretical basis than BF models (e.g., Keith & Reynolds, 2012;
Murray & Johnson, 2013). Recently, Beaujean (submitted for
publication) argued that a BF theory of intelligence does
exist—the one that started with Spearman’s conceptualizations
of g, group factors, and specific factors, and then evolved in
Carroll's three-stratum theory.

First, a BF model's representation of g is consistent with
Spearman's conceptualization because the BF model is just an
extension of Spearman's two-factor theory that allows for
Stratum II (group) factors (Holzinger & Swineford, 1939). This
is not surprising, given Holzinger's close association with
Spearman (Harman, 1954). Moreover, Spearman's conceptu-
alization of group factors is aligned with the BF model
(Spearman, 1933) and he accepted the g factor extracted
from a BF model to be the same as that from his two-factor
theory (Spearman, 1946).

Second, John Carroll's conceptualization of intelligence is
more consistent with a BF model than a HOF model. Carroll
(1997) argued that g should be extracted from a set of cognitive
ability measures first, and then the Stratum II factors should be
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formed from covariances residualized after extracting g. This is
the same idea Holzinger and Swineford (1937) used in
developing the BF model.

While Carroll (1996) often presented his three-stratum
theory as a higher-order model in figures, he warns against
taking the structure of his figures “too literally or precisely”
(p. 4) because he explicitly preferred the BF model to the HOF
model. This is most noticeable in the CFAs Carroll conducted in
order to verify his three-stratum model, as he consistently
chose to use BF models instead of HOF models (Carroll, 1997,
1995).

One may argue that a HOF model is more preferable to a BF
model because g is best thought of as an abstraction of Stratum
Il factors, not a direct influence on tests. This argument not only
contradicts Carroll's (1996) conceptualization of g, but also is
contrary to Spearman's initial conceptualization of g as having
direct influences on the measured tests (Hart & Spearman,
1912).

5. Conclusion

The CV method was a major contribution to the study of SH.
The HOF MG-CFA method improved the CV method by
providing a technique to examine the assumptions underlying
the use of CV. We believe that the BF MG-CFA approach makes
an additional contribution to the field of studying SH because it
can provide a clearer picture of the contributions of g and
Stratum II factors to the differential size of group differences.
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