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It is probably safe to say that all scientists believe that empiri-
cal replication is a good thing. When someone doubts the 
validity of an experimental finding, a strong counterargument 
is to show that the finding successfully replicates in a new 
experiment. Throughout all of science and especially for fields 
that depend on statistical data analysis, leading researchers 
emphasize that experimental replication is the final arbiter in 
determining whether effects are true or false (Cohen, 1994; 
Fisher, 1935/1956; Roediger, 2012). There is much value to 
replication, but the belief that ever more successful replication 
verifies the validity of a finding is incorrect, because replica-
tion does not function in experimental psychology in the same 
way that it operates in some other scientific fields. Counterin-
tuitive though it may seem, it is possible to have too much 
successful replication.

As shown below, the difficulties with replication in psy-
chology are related to fundamental properties of hypothesis 
testing. Most experimental psychologists know that the pro-
cess of hypothesis testing sometimes leads to Type I errors by 
rejecting a true null hypothesis. Indeed, this should happen 
around 5% of the time that the null is true, given conventional 
techniques. In a similar way, experiments sometimes make 
Type II errors by not rejecting a false null hypothesis. The 
probability of a Type II error depends on the size of the effect, 
the design of the experiment, and the experiment sample 

size(s). Psychologists seem to forget about Type II errors, per-
haps because they are difficult to estimate. The existence of 
Type II error (and its complement, power) implies that even if 
an effect is real, some experiments should fail to reject the null 
hypothesis. Another way to describe this property is that fail-
ures to replicate should occur with some probability, even 
when the effect is true.

More precisely, even experiments measuring a true nonzero 
effect should successfully replicate the existence of that effect 
only at a rate that is consistent with the power of the experi-
ments. Ioannidis and Trikalinos (2007) showed how to use this 
fundamental characteristic of hypothesis testing to identify an 
excess of significant results, which can be interpreted as the 
presence of publication bias. When there are significantly 
more reports of experiments that reject the null hypothesis 
than is consistent with a power analysis of those experiments, 
there is evidence either that some null or negative findings 
were suppressed or that the reported experiments were run 
improperly.
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Abstract

Like other scientists, psychologists believe experimental replication to be the final arbiter for determining the validity of 
an empirical finding. Reports in psychology journals often attempt to prove the validity of a hypothesis or theory with 
multiple experiments that replicate a finding. Unfortunately, these efforts are sometimes misguided because in a field like 
experimental psychology, ever more successful replication does not necessarily ensure the validity of an empirical finding. 
When psychological experiments are analyzed with statistics, the rules of probability dictate that random samples should 
sometimes be selected that do not reject the null hypothesis, even if an effect is real. As a result, it is possible for a set of 
experiments to have too many successful replications. When there are too many successful replications for a given set of 
experiments, a skeptical scientist should be suspicious that null or negative findings have been suppressed, the experiments 
were run improperly, or the experiments were analyzed improperly. This article describes the implications of this observation 
and demonstrates how to test for too much successful replication by using a set of experiments from a recent research 
paper.
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The Ioannidis and Trikalinos publication bias test has 
started to be applied to investigations in psychology. Renke-
witz, Fuchs, and Fiedler (2011) used it to identify publication 
bias in two meta-analyses related to judgment and decision 
making. Francis (2012a, 2012b, 2012c, 2012d, in press) used 
the test to demonstrate that publication bias appeared to have 
contaminated some sets of findings in experimental psychol-
ogy, including the precognition studies of Bem (2011). The 
presence of publication bias does not necessarily mean a 
reported effect is false, but it suggests that the presented evi-
dence is unconvincing. In a sense, an experiment set contami-
nated with publication bias is anecdotal and therefore 
nonscientific. This analysis suggests that there is no reason to 
believe Bem’s claim that people can sense the future and use 
that information to guide present actions. Schimmack (in 
press) used a similar analysis to reach the same conclusion.

To explain these ideas, the following section describes an 
analysis of a set of experiments reported by Galak and Meyvis 
(2011), who found that people remembered an unpleasant 
event as being more aversive if they believed they would soon 
experience the event again. In this one report, the main finding 
was replicated multiple times. As the analysis below shows, 
given the properties of the experiments in Galak and Meyvis 
(2011), the reported number of successful replications is 
suspicious.

Before going through the analysis, it is important to empha-
size that evidence of publication bias does not necessarily 
mean that a reported phenomenon is false. Rather, the pres-
ence of publication bias means that a set of reported experi-
ments does not appropriately investigate the validity of the 
phenomenon. An effect may be real or not, but a set of experi-
ments with publication bias does not clarify the situation; 
instead, additional unbiased experiments are required to deter-
mine whether such an effect is real.

Also the presence of publication bias does not mean that it 
is appropriate to conclude that authors deliberately set out to 
mislead readers. As argued below, publication bias could occur 
in a set of experiments because authors closely follow the 
standards of the field. Indeed, the experiments reported in 
Galak and Meyvis (2011) appear to meet (and often exceed) 
the standards of experimental psychology. The quality of the 
report (by current standards) is related to the strength of evi-
dence for publication bias.

Analysis of Galak and Meyvis’s (2011) 
Experiments
Galak and Meyvis (2011) showed that anticipation of a repeat 
exposure to an unpleasant situation (e.g., a boring task) leads 
to higher aversive ratings for the memory of the previous 
exposure. Table 1 shows the main statistical properties of eight 
experiments that consistently showed this effect. Each experi-
ment tested differences between aversive ratings of a previous 
unpleasant situation for a group of participants who believed 
they would experience more of the unpleasant situation and 

for a group of participants who believed they were done with 
the unpleasant situation. The main finding was that the aver-
sive ratings were higher for people in the more exposure group 
compared with the done group. There were additional studies 
that measured a conceptually similar effect in a nonlaboratory 
situation (e.g., women’s ratings of menstruation and runners’ 
ratings of climbing a hill), but they are not included in the 
analysis because they involved comparisons that cannot be 
directly matched with the findings in Table 1.

Effect sizes
Each statistical analysis was based on an analysis of covari-
ance (ANCOVA) that factored out a participant’s initial aver-
sive rating for the unpleasant situation. The authors noted that 
there was never a statistical difference between the two groups 
for these initial ratings, so the ANCOVA factorization proba-
bly makes little difference in the data analysis, and a normal 
analysis of variance would have likely produced similar 
results. The overall effect of the difference between the two 
groups can be estimated with a meta-analytic technique that 
pools the effect sizes across all of the experiments. The first 
step is to compute a standardized effect size for each experi-
ment, Hedges g. The formula is

(1)

where F is the reported statistic, R is the covariate outcome cor-
relation, and J = 1−3/[4(n1 + n2 − 2) − 1] is a correction fac-
tor for small sample sizes (Hedges & Olkin, 1985). This effect 
size describes the difference between the two groups in terms of 
the standard deviation of the data. Bigger effect sizes indicate 
stronger effects on the judgments of remembered aversion as a 
result of anticipated (or not) additional exposure to the unpleas-
ant context. Galak and Meyvis (2011) did not report R, so for 
the present analysis it was set to zero, which maximizes g (and 
is generally consistent with their observation that there was no 

g J
F n1 n2 1 R2

n1n2

 

Table 1. Statistical Properties of the Galak and Meyvis (2011) 
Experiments.

Description n1 n2 Effect size (g) Power from pooled ES

Study 1a 15 15 0.745 0.257
Study 1b 15 15 0.832
Study 2 22 22 0.688 0.452
Study 3 28 28 0.657 0.556
Study 4 52 51 0.377 0.815
Study 5 44 43 0.652 0.747
Study 6 41 41 0.482 0.725
Study 7 25 26 0.628 0.511

Note: Effect sizes (ESs) were computed from the reported F values. The 
power for Study 1 is for both findings rejecting the null hypothesis.
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difference in initial aversion ratings between the two groups). 
This choice for R means that the effect size values in the fourth 
column of Table 1 tend to overestimate the true effect sizes.

In a meta-analysis, the experiment-wise effect sizes are 
combined (by weighting with the inverse variance of the effect 
size) to create a pooled effect size (Hedges & Olkin, 1985). 
Study 1 is a special case because one set of participants gener-
ated the two reported effect sizes. To deal with dependency 
between these effect sizes, they were averaged, and then the 
averaged effect size was entered into the meta-analytic pool-
ing calculation. The pooled effect size across all of the experi-
ments, g* = 0.568, is the best estimate of the standardized 
effect size, and it can be used to compute the power of each 
experiment.

Power
Power is the probability that an experiment will reject the null 
hypothesis for a given effect size. Experiments with larger 
effects or larger sample sizes have more power.

The last column of Table 1 shows the power of each experi-
ment using the pooled effect size. For simple cases, power can 
be estimated with relatively straightforward calculations that 
use the effect size and sample sizes (Champely, 2009; R 
Development Core Team, 2011). A special case is that the 
power value given for Study 1 in Table 1 is the probability of 
rejecting the null hypothesis for both hypothesis tests. This 
value was estimated with a simulation of 100,000 experi-
ments. In each simulation, the sampling populations from the 
two measurements were correlated with r = .9 (a larger corre-
lation would give a larger power, but it would never go above 
.324, which is the power of one experiment by itself). The 
simulations also computed the probability of none of the tests 
rejecting the null hypothesis (.608) and each test alone (.068 
and .066).

The power values for Studies 3, 4, 5, and 6 were also calcu-
lated with simulations because the standard deviation was esti-
mated using Fisher’s least significant difference (LSD) test, so 
the degrees of freedom in the tests are larger than what is indi-
cated by the sample sizes in Table 1. The LSD test makes each 
experiment slightly more powerful than it would be normally.

Publication bias
The sum of the power values (4.06) is the expected number of 
times eight experiments like these should reject the null 
hypothesis. With a criterion of p = .05, seven of the eight 
experiments actually rejected the null hypothesis. The proba-
bility that seven or more experiments like these would reject 
the null hypothesis is computed with an exact test that consid-
ers all nine possible combinations of experiments with seven 
or eight rejections. The probability of each combination was 
found by multiplying the power and Type II error values as 
appropriate for each experiment. These probabilities were then 
summed to give the overall probability, .079, of observing 

seven (or more) experiments that reject the null hypothesis. 
This probability is below the .1 criterion that is typically used 
to indicate publication bias (Begg & Mazumdar, 1994; Ioan-
nidis & Trikalinos, 2007; Sterne, Gavaghan, & Egger, 2000). 
Thus, the number of successful replications of the effect is sur-
prising, given the size of the effect and the experiments that 
measured it.

It might be tempting to argue that the probability of the 
experimental findings is not very much below the .1 criterion 
(which is admittedly somewhat arbitrary).1 However, because 
the effect sizes were computed with R = 0 in Equation 1, they 
were likely overestimated. In addition, as shown below, a 
common side effect of publication bias is an exaggeration of 
reported effect sizes. The overestimated effect sizes lead to 
overestimated power values, so the bias problem is likely 
worse than what the test indicates.

Given the misunderstandings about replication in psychol-
ogy, there is strong pressure for authors to present only statisti-
cally significant findings. This pressure can lead to strange 
choices in how authors present their results, and these choices 
often exacerbate the conclusion of publication bias. For exam-
ple, the above analysis deviated a bit from the interpretation of 
the findings made by Galak and Meyvis (2011). Power depends 
on the criterion value that is used to determine statistical sig-
nificance. By convention, this criterion is set to be .05, which 
defines the probability of a Type I error (rejecting the null 
hypothesis when it was really true). Galak and Meyvis (2011) 
usually followed the convention, but for Study 4 they com-
puted p = .056 and concluded that they had replicated their 
finding. Strictly following convention, such a finding would 
be treated as a failure to replicate, and this is how it was inter-
preted in the above analysis.

However, the criterion p value is somewhat arbitrary, and 
perhaps Galak and Meyvis (2011) had valid reasons to use a 
nonstandard criterion (say, p = .06) as a basis for rejecting the 
null hypothesis. If we imagine the criterion to be this nonstan-
dard value, then the power for Study 4 is a bit larger, 0.837. 
However, under this interpretation, all eight experiments 
rejected the null hypothesis, and the probability of this happen-
ing is the product of the power values, which is 0.015. Thus, by 
adjusting the significance criterion to make it so that all of the 
experiments rejected the null hypothesis, Galak and Meyvis 
(2011) made the experiments very unbelievable as a set.

In an important sense, Galak and Meyvis (2011) are correct 
that Study 4 provides evidence for their effect. Their mistake 
was to suppose that statistical significance was needed to dem-
onstrate such evidence. If there were no publication bias, a 
meta-analysis would properly use the nonsignificant finding in 
Study 4 as useful information about the pooled effect size.

The problems with the biased reported findings are not alle-
viated by the additional conceptual replications in the report. 
In addition to the findings reported in Table 1, Galak and Mey-
vis (2011) had at least three successful conceptual replications 
of the same effect. Because they measured somewhat different 
phenomena, these conceptual replications cannot be pooled 
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with the effect sizes in Table 1, but they still have power val-
ues of less than one. It is difficult to accurately measure power 
from a single experiment (Yuan & Maxwell, 2005), but if one 
imagines that the three additional experiments each had power 
values of 0.85, which is larger than any of the other experi-
ments, then the probability of having 10 out of 11 experiments 
reject the null hypothesis is .053. The probability of all 11 
experiments rejecting the null hypothesis (using the nonstan-
dard criterion in Study 4) is .009.

Publication bias and theory predictions
A similar analysis can be used to consider the strength of the 
evidence in support of Galak and Meyvis’s (2011) theory. 
Their conclusions emphasized that the theory was able to dis-
tinguish experiments that should, and should not, show the 
effect. They noted that in addition to the repeated success for 
predicting experiments to reject the null hypothesis, the theory 
also successfully predicted nine additional findings where the 
aversion ratings were not affected by an anticipated return to 
an unpleasant context. It may seem that the ability of the the-
ory to predict hits and misses so accurately is strong validation 
of the theory, but this interpretation is misguided because the 
experiments lack sufficient power to support such claims. Just 
as there can be too much successful replication, excessive 
validation of a theory can also indicate a problem.

Suppose that the theory is correct and that the situations 
where it predicts no effect really have an effect size of zero. As 
a result of random sampling, each experiment has a .05 prob-
ability of rejecting the null hypothesis. Thus, the probability 
that nine such experiments do not reject the null hypothesis is 
(1 − .05)9 = .63. The previous analysis established that the 
probability of the theory correctly predicting all but one of the 
rejections of the null hypothesis for the eight experiments 
described in Table 1 is likely no more than .079. The probabil-
ity of the theory being so accurate that it correctly predicts all 
but one of the reported rejections and all of the reported non-
rejections of the null hypothesis is no more than the product of 
these two probabilities, which is .050. (It is no more than .009 
if one uses the nonstandard rejection criterion for Study 4.) 
Another way to describe the conclusion of this analysis is that 
it is not believable that a theory should be so accurate when the 
experiments should show so much uncertainty.

In one sense, it is not the theory that is to blame for this 
conclusion; the fault is with the experiments. Given the effect 
size estimated by the experiments, the studies in Galak and 
Meyvis (2011) are underpowered. Two of the experiments had 
power values less than 0.5, and two other experiments had 
power values below 0.6, but every one of these experiments 
rejected the null hypothesis. Only three experiments had 
power values greater than 0.7. One cannot draw strong infer-
ences from any specific pattern, but it is curious that the exper-
iment with the highest power (Study 4) was the one experiment 
that failed to reject the null hypothesis with a .05 criterion. 
Given these relatively low power values, it will not be possible 

to use the outcome of these experiments to draw firm conclu-
sions about any theory. Roberts and Pashler (2000) made 
somewhat similar points about conclusions that can be drawn 
given the level of uncertainty in a model and in data.

However, the nature and use of the theory proposed by 
Galak and Meyvis (2011) reflects the general confusion psy-
chologists appear to have about replication. As is common in 
psychology, they described their theory in a nonquantitative 
way. It consists of some ideas that predict relationships 
between variables, and all of these relationships are described 
at a verbal level. As is also common in psychology, they used 
the theory to predict null hypothesis rejections and nonrejec-
tions in a way that does not consider the design or power of the 
experiments. Although common, this approach ignores the 
fundamental properties of hypothesis testing. No theory (ver-
bal or quantitative) should directly predict the outcome of a 
hypothesis test because a predicted experimental outcome is 
not well defined without first specifying the properties (e.g., 
sample sizes, effect size, power) of the test.

The Importance of Effect Sizes
Rather than focusing on whether an experiment rejects the null 
hypothesis, psychologists should use experiments to charac-
terize the magnitude of effect sizes. Likewise, theories should 
not bother with verbal descriptions of how variables are related 
to each other but instead should quantitatively predict effect 
sizes and relationships between effect sizes. With a theory of 
effect sizes, psychologists can easily predict the power of 
experiments and then design experiments that properly test a 
theory’s predictions. Psychologists need to recognize that 
effect size estimation (magnitude and precision) is the key 
property of their experiments, and this is true whether one uses 
traditional methods or Bayesian approaches (Cumming, 2012; 
Kruschke, 2010; Rouder, Speckman, Sun, Morey, & Iverson, 
2009). There is a role for hypothesis testing in psychology, but 
it is not necessary for many experimental studies.

Given that almost every empirical study in psychology cur-
rently uses hypothesis testing, it may seem bizarre to claim 
that effect sizes are more important than the outcome of 
hypothesis tests; but the case can be argued in at least two 
ways. First, as noted above, effect sizes play a central role in 
predicting the outcome of hypothesis testing. Surely, the the-
ory of Galak and Meyvis (2011) does not predict that every 
experiment testing the theory will reject the null (e.g., even 
with sample sizes of, say, n = 3). The authors probably meant 
that if the theory were true, then an experiment with a large 
enough sample would reject the null hypothesis. But the defi-
nition of “large enough sample” is determined by the magni-
tude of the effect size, so even if you believe that the goal of 
experiments is to indicate whether an effect exists (the out-
come of a hypothesis test), you still have to focus on effect 
sizes in order to predict the outcome of experiments. If you do 
not have any estimate of an effect size (through prior work or 
theory), then before predicting the outcome of a hypothesis 
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test, you need to gather data to estimate the effect size. Note, 
even with a given effect size, the best a researcher can do is 
estimate the probability of rejecting the null; there is always 
some uncertainty in experimental outcomes.

Second, the importance of effect size measurement is 
reflected in the fact that almost every quantitative model in 
psychology describes effect measures, such as reaction time, 
proportion correct, contrast threshold, or some function of 
such effects. For example, Dutilh et al. (2012) compared 
model predicted and empirical data for posterror slowing (dif-
ferences in reaction time for posterror and postcorrect trials). 
The reported output of the model is an effect (difference in 
reaction times), not a statement about statistical significance. 
Indeed, it is difficult to find any situation where a quantitative 
model explicitly focuses on the outcome of a hypothesis test 
rather than the magnitude (and precision) of an effect. Empiri-
cal studies should focus on effect sizes because they are impor-
tant for developing quantitative theories that summarize 
empirical data and provide a framework for understanding 
psychological mechanisms. The outcome of a hypothesis test 
is mostly irrelevant for such modeling efforts.

How Does Publication Bias Happen?
By the current standards of science and scientific reporting, 
Galak and Meyvis (2011) is an exemplary article. The findings 
are grounded in theory, connected to other phenomena, suc-
cessfully replicated many times, and explained with an intui-
tively plausible theory that accurately predicts both the 
presence and absence of an effect. Nevertheless, the analysis 
above demonstrates that it is precisely because the article 
meets (and exceeds) the current standards of psychological 
science that there is strong evidence of publication bias. The 
troubling implication is that the standards of science in experi-
mental psychology are flawed. It seems likely that similar 
problems apply to many other findings in experimental psy-
chology (and in other fields that depend on statistics), although 
the above analysis may not be applicable if a phenomenon has 
not had many replication attempts.

Given the low probability that the experiments in Galak 
and Meyvis (2011) would produce the number of reported null 
hypothesis rejections, it is valuable to consider how this could 
have happened. There are four broad possibilities:

1. Chance: Every decision-making process has a risk 
of making a mistake in an uncertain environment. It 
is possible that a set of experiments is not actually 
biased but just happens to produce unusual samples 
that appear to be biased. Regardless of this risk, the 
proper scientific interpretation of a set of appar-
ently biased findings is to doubt the validity of the 
experiments. To do otherwise is to reject the tenets of 
hypothesis testing.

2. File-drawer problem: There may have been addi-
tional experiments that did not reject the null hypoth-

esis and were not described in the published report. 
This could be because the authors chose to not 
describe such experiments or because reviewers or 
the editor asked them to remove the null findings 
before the manuscript could be published.

3. Inflated frequency of rejecting the null hypothesis: 
The experiments may have been run improperly in 
a way that inflated the rate of rejection of the null 
hypothesis. Simmons, Nelson, and Simonsohn (2011) 
described several tricks that can inflate the rejection 
rate of an experiment (regardless of whether the null 
hypothesis is true or false). Rejection rate inflation 
can also occur because of improper analytic tech-
niques (McCullough & McWilliams, 2010, 2011).

4. Underestimation of the true effect size: The experi-
ments may have been run improperly in a way that 
underestimated the effect size. With an underesti-
mated effect size, the above analysis will underesti-
mate the power of the experiments. Ioannidis (2008) 
notes that effect size underestimation can happen for 
some sequential sampling situations when the true 
effect size is large because an experiment can reject 
the null hypothesis with an underestimated value of 
the effect size. Simulation examples of this situa-
tion will be described in the discussion of Figure 1B. 
Even for such cases, the underestimation tends to be 
small, so this explanation is unlikely to account for 
the low believability of the findings in Galak and 
Meyvis (2011).

There does not appear to be a method for identifying which 
of these broad explanations (and it may be more than one) 
contribute to the appearance of publication bias in a set of 
experiments.

Properties of Publication Bias
This section uses multiple simulated two-sample t tests to 
demonstrate general properties and characteristics of publica-
tion bias. Each simulated experiment took a random sample of 
30 data points from a standard normal distribution (mean of 
zero and standard deviation of one) as a control group and a 
random sample of 30 data points from a normal distribution 
with a mean of g and a standard deviation of one as an experi-
mental group. Thus, the true effect size for the experiment was 
g. A two-sample, two-tailed t test with α = .05 was used to 
determine statistical significance. A set of 10 such experiments 
with data taken from populations with the same true effect 
size, g, was used to compute the meta-analytic pooled effect 
size, g*. The light gray dots in Figure 1A show the pooled 
effect size plotted against the true effect size, for true effect 
size values between zero and 1.5.

The simulation was repeated 30 times for each true effect 
size. Because meta-analysis works, it should not be surprising 
that the light gray dots cluster around the black diagonal line, 
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which corresponds to the true effect size. The dashed line plots 
the mean of g* across the 30 sets of experiments for each true 
effect size. The meta-analysis works properly because the 
entire set of findings has been fully reported, regardless of 
whether an experiment rejected the null hypothesis.

File-drawer bias
The dark gray diamonds in Figure 1A describe the values of 
the same type of meta-analysis of effect size, but the set of 
experiments was subjected to a file-drawer bias that published 
only those experiments that rejected the null hypothesis in a 
positive direction (i.e., the experimental group mean is bigger 
than the control group mean). Thus, only those experiments 
that rejected the null hypothesis (in a positive direction) were 
part of the meta-analysis. Because only experiments with rela-
tively large experiment-wise effect sizes can reject the null 
hypothesis, the file-drawer bias caused the pooled effect size 
to grossly overestimate the true effect size. Note, even when 
the true effect size was zero, the pooled effect size of the 
reported experiments was usually above 0.5. The dotted line 
reports the mean pooled effect size across the simulations for 
each true effect size. That the dotted line converges on the 
dashed line for large true effect sizes simply reflects the prop-
erty that almost all of the experiments rejected the null hypoth-
esis when the true effect size was large enough. When some 
experiments do not reject the null hypothesis, a file-drawer 
bias mischaracterizes the magnitude of an effect.

It may seem unlikely that anyone would use a file-drawer 
bias for a small true effect size because so few experiments 
would reject the null hypothesis. When the true effect size is 
zero (the null hypothesis is really true), usually none of the 10 
simulated experiments reject the null hypothesis. Only around 
2.5% of the time does an experiment reject the null hypothesis 
in the desired direction (just by random sampling). Few 
researchers would deliberately suppress nine (or more) null 
findings in order to publish one experiment that rejected the 
null hypothesis, if only because it is a very inefficient way of 
producing significant experimental findings. Such efforts 
would be exhausting and properly characterized as fraud. 
However, there are ways to (improperly) increase the rate of 
rejecting the null hypothesis.

Data peeking
Consider a sequential sampling approach that is sometimes 
called data peeking (or optional stopping); here the experi-
menter runs a hypothesis test while gathering data and stops 
the experiment when the null hypothesis is rejected or when 
the sample size reaches an upper limit (Berger & Berry, 1988; 
Strube, 2006). New simulated experiments were run with a 
data peeking strategy. Each experiment started with a sample 
size of 10 for both the control and experimental groups. If the 
null hypothesis was rejected with a t test, the experiment was 
stopped. If the null hypothesis was not rejected, one additional 
data point was selected for each group and another t test was 
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Fig. 1. Pooled effect sizes computed from simulated experiments under various types of publication bias. In Panel A, 
each light gray circle corresponds to the meta-analytic pooled effect size from a set of properly run 10 experiments 
without any publication bias. Each dark gray diamond is the pooled effect size of only those experiments that reject 
the null hypothesis. In Panel B, the same kind of analysis is performed, except all of the experiments use a data peeking 
strategy. In terms of estimating the effect size, the findings are very similar.
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run. This process continued until the experiment stopped or 
the sample size reached a maximum of 30 data points. The 
light gray dots in Figure 1B show the pooled effect size, for a 
set of 10 simulated experiments, plotted against the true effect 
size. The pooled effect size is not greatly affected by data 
peeking. (The slight underestimation of the effect size for 
large true effect size values is due to stopping the experiment 
early when rejecting the null hypothesis. Such stopping can 
occur for effect sizes that are smaller than the true value, which 
biases the pooled effect size.) However, the introduction of an 
additional file-drawer bias to the experiment set leads to mas-
sive overestimation of the pooled effect size for a set of experi-
ments, as indicated by the dark gray diamonds in Figure 1B.

In many respects, the findings in Figures 1A and B are very 
similar. However, what has fundamentally changed between 
the data peeking results in Figure 1B and the non–data peeking 
results in Figure 1A is that the data peeking approach increased 
the frequency of rejecting the null hypothesis. Figure 2 plots 
the mean number of experiments (out of 10) that rejected the 
null hypothesis for the experiment sets that produced Figure 1. 
With data peeking, the mean number of experiments that 
rejected the null hypothesis was larger than without data peek-
ing. Data peeking by itself introduces a publication bias by 
giving a false sense of how often an effect will reject the null 
hypothesis. An equally important property of data peeking is 
that it makes it easier to implement a file-drawer bias. Con-
sider a true effect size of 0.3 in Figure 2. Without data peeking, 
a set of 10 experiments with a sample size of 30 data points in 
each group will reject the null hypothesis only about 1.7 times. 
If the experiments were run with data peeking (starting from 
10 and going to 30 data points in each group), there will be 

almost four rejections of the null hypothesis. Even when the 
null hypothesis is true, data peeking increases the rejection 
rate (now Type I error) from around 0.02 up to almost one 
experiment in 10.

The increase in the rejection rate introduced by data peek-
ing may not seem like much, but Simmons et al. (2011) 
described several other tricks that can also inflate the rejection 
rate, and John, Loewenstein, and Prelec (2012) reported evi-
dence that experimental psychologists use some of these 
tricks. When these tricks are combined, the rejection rate can 
easily reach more than 50%, even when the null hypothesis is 
true. As a result, by running improper experiments, it becomes 
efficient to introduce a file-drawer bias and filter out negative 
or null findings. Indeed, the natural procedure of someone 
using data peeking may be to run the experiment until it rejects 
the null hypothesis or the researcher gives up. In the former 
case, the experiment is published. In the latter case, the 
researcher may conclude that there is no effect and choose to 
not publish the result. Thus, the biases support each other and 
seriously interfere with the ability of the field to make scien-
tific conclusions about the magnitude of effect sizes.

Does Publication Bias Matter?
An important aspect of the negative impact of publication bias 
can be realized by considering the three sets of experiments 
summarized in Table 2. For one of the experiment sets, the null 
hypothesis was true, but data peeking (with samples starting at 
10 and stopping at 30 data points) and a file-drawer bias were 
used to produce a set of five experiments that all reject the null 
hypothesis. What is not reported is that 15 additional experi-
ments did not reject the null hypothesis but were not reported. 
For another experiment set, the true effect size was 0.1. This 
study picked sample sizes at random between 10 and 30 data 
points for each group (no data peeking). There were a total of 
100 experiments, but only the five experiments that rejected 
the null hypothesis in a positive direction (experimental group 
larger than control group) were reported. The other 95 experi-
ments were put in a “file drawer.” For a final experiment set, 
the true effect size was 0.8, and sample sizes were randomly 
selected to be between 10 and 30 for five experiments. Because 
of the large true effect size, each of these experiments rejected 
the null hypothesis. Before reading further, look at the experi-
ment sets in Table 2 and try to determine which set is valid and 
which set has a true null hypothesis.

At first glance, the three sets of experiments look very simi-
lar. All have a range of sample sizes, p values, and effect sizes. 
Nevertheless, the publication bias test correctly identifies that 
Sets 1 and 3 have a bias. The experiments in Set 1 had a true 
null hypothesis, but the experiments were generated with a 
combined data peeking and file-drawer bias strategy, where 
only the five experiments that rejected the null hypothesis in a 
positive direction were reported. For Set 1, the pooled effect 
size across the reported experiments is g* = 0.82, but because 
of the small sample sizes, the power of the experiments to 
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detect this effect size is rather small. The expected number of 
times these five experiments would reject the null hypothesis 
is the sum of the power values, which is only 2.8. The proba-
bility of all five experiments rejecting the null hypothesis is 
the product of the power values, which is only .042. This set  
of experiments has too much successful replication to be 
believable.

For the experiments in Set 3, the true effect size was only 
0.1, and the reported experiments were the five experiments 
out of 100 that rejected the null hypothesis in the positive 
direction. In contrast to the small true effect size, the pooled 
effect across these five experiments is g* = 0.70. On the basis 
of the power of the experiments to detect such an effect size, 
the expected number of times these experiments would reject 
the null hypothesis is only 2.8. The probability of all five 
experiments rejecting the null hypothesis is only .052, which 
is below the .1 criterion for publication bias tests.

In contrast, for experiment Set 2, the pooled effect size is  
g* = 0.89 (because of random sampling, it happens to overes-
timate the true effect size). The power values for these experi-
ments are all above 0.8, and the expected number of times 
these five experiments should reject the null hypothesis is the 
sum of the power values, which is 4.3. The probability of all 
five of these experiments rejecting the null hypothesis is the 
product of the power values, which is .45. Thus, the experi-
ment set without bias is believable.

Identifying publication bias
There is a quick and dirty way of identifying publication bias 
in a set of experiments, and it is the basis of the publication 
bias test proposed by Begg and Mazumdar (1994). It is not as 
precise as the test of Ioannidis and Trikalinos (2007), but it 
serves as a pretty good indicator of bias in many cases. Com-
pare the effect size with the sample size across the experiments 
in Data Set 1. As the sample size increases, the effect size 
decreases. This happens because an experiment rejects the null 
hypothesis only when the t statistic is large enough. Since the 
t statistic is directly related to the effect size and to the square 
root of the sample size, reported experiments with smaller 

samples tend to have larger effect sizes (otherwise they would 
not have rejected the null hypothesis). Pearson’s correlation 
between sample size and effect size for the experiments in 
Data Set 1 is r = −.86. The same kind of relationship holds for 
the experiments in Set 3, where r = −.83. In contrast, the 
experiments in Set 2 were created without a publication bias, 
and the effect size is not negatively related to the sample size 
(r = .25). The corresponding correlation for the experiments 
from Galak and Meyvis (2011) in Table 1 is r = −.86 (using the 
average of the effect size values for Study 1), which is consis-
tent with the analysis above. This approach to identifying bias 
should be used cautiously because a similar relationship 
between sample size and effect size will be found if the experi-
ments have different true effect sizes and an a priori power 
analysis was used to identify an appropriate sample size for 
each experiment (Renkewitz et al., 2011). Of course, the pub-
lication bias test described above should not be applied to 
experiments with different true effect sizes.

The experiment sets in Table 2 make it clear that publica-
tion bias casts substantial doubt about the validity of a set of 
experiments. A set of experiments where the null hypothesis is 
true can give the illusion of being a very strong finding, if the 
experiments are contaminated by publication bias. Likewise, 
experiments can have publication bias when the true effect 
size is not zero. For the experiment sets in Table 2, we know 
the true effect sizes, but in general practice, this is not possi-
ble. This means that, given a set of experiments that success-
fully replicate too often, it is impossible to determine the true 
magnitude of the effect and even impossible to determine 
whether the effect investigated by those experiments is real or 
false.2 A contaminated experiment set offers no trustworthy 
information, and a researcher interested in discovering the 
truth about the tested phenomenon will need to run new exper-
iments without bias. Some approaches try to compensate for 
publication bias (e.g., Hedges & Olkin, 1985) by estimating 
the number of unpublished null findings, but these methods 
deal only with the file-drawer problem and will give mislead-
ing conclusions if other kinds of bias are also present. Thus, 
only a new set of unbiased experiments can determine whether 
an effect is real.

Table 2. Three Sets In Which Every Reported Experiment Rejects the Null Hypothesis.

Set 1 Set 2 Set 3

n1 = n2 t p g n1 = n2 t p g n1 = n2 t p g

10 2.48 .03 1.06 21 2.67 .01 0.81 16 2.10 .04 0.72
28 2.10 .04 0.55 27 4.72 <.01 1.26 19 2.19 .04 0.70
10 3.12 .01 1.34 22 3.66 <.01 1.08 25 2.22 .03 0.62
15 2.25 .04 0.80 26 2.74 .01 0.75 14 2.24 .04 0.82
12 2.34 .03 0.92 24 2.06 .05 0.58 23 2.49 .02 0.72

Note: For one set, the null hypothesis is actually true, but data peeking and a file-drawer bias caused reporting of only the findings that reject the 
null hypothesis. For one set, the null hypothesis is false, but the true effect size is only 0.1. A file-drawer bias was used to filter out those experi-
ments that did not reject the null hypothesis. For another set, no bias was used and the null hypothesis is false, with a true effect size of 0.8. See 
the text for details about which experiment set is valid.
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Conclusion
Although experimental psychologists have long believed that 
successful replication is a way to demonstrate the validity of 
an empirical finding, this belief is not always true. When 
experiments have low or moderate power, there should fre-
quently be experimental findings that fail to replicate a result, 
even if the effect is true. In such a situation, it is possible to 
have too much successful replication, which suggests some 
form of publication bias.

The presence of publication bias causes real harm to scien-
tific investigations of phenomena. As Figure 1 shows, publica-
tion bias can overestimate effect sizes and thereby mischar- 
acterize relationships between variables. In practical terms, 
treatments or methods that appear to produce big effects in 
biased research experiments will not be as effective when put to 
practice. Moreover, once publication bias is identified, it is not 
possible to use that set of experiments to determine whether the 
true effect is different from zero.

Misunderstandings about the properties of replication may 
partly explain why some subfields of psychology (and other 
fields, such as biology and medicine) do not encourage repli-
cation attempts. There appears to be a tendency to believe that 
once an effect has been shown to be statistically significant, 
then its truth has been established. With such a view, it is 
pointless to run additional experiments with the same methods 
because nothing is gained. In reality, every experimental out-
come has uncertainty and there is much to be gained by pool-
ing findings across experimental replications. At some point, 
there are diminished returns for additional replications, but a 
single finding that just barely reaches statistical significance is 
poorly established. If such an experiment is repeated with new 
random samples of the same size, they are expected to reject 
the null hypothesis only half of the time. Because researchers 
misunderstand the nature of replication, they are unmotivated 
to attempt replications, and when such attempts are made, the 
results are frequently misunderstood.

The extent of publication bias throughout the field is not 
known, but the publication bias test of Ioannidis and Trikali-
nos (2007) can be used to detect it. Given that a study such as 
Galak and Meyvis (2011), which exceeds the standards of the 
field in many respects, shows strong evidence of publication 
bias, there is reason to fear that such bias is endemic. The stan-
dards of experimental psychology may actually be encourag-
ing publication bias. Addressing these problems will require 
significant changes to how experimental psychologists draw 
conclusions from experiments. The first step is to focus on 
precisely measuring effects rather than on rejecting the null 
hypothesis. Having too many rejections of the null hypothesis 
can mislead a researcher, but there is never direct harm in 
improving the precision of measurement.

Declaration of Conflicting Interests
The author declared no conflicts of interest with respect to the 
authorship or the publication of this article.

Notes
1. If anything, the .1 criterion is probably too small (Schimmack, in 
press) because scientists will be reluctant to use or build on scientific 
results that have a low probability of occurring (say .15). The crite-
rion value is also typically much larger than the true Type I error rate 
because the test is quite conservative (Francis, 2012b). As for all 
hypothesis tests, researchers can choose error rates that they are 
comfortable with, but it would be difficult to justify setting the Type 
I error rate for a conclusion of bias to be much smaller than the cri-
terion that was used for the experiments that concluded evidence for 
an effect.
2. Perhaps some kinds of biases can be identified and dealt with by 
exploring raw data or discussing the nature of bias with authors. 
However, in many cases, authors may not know the nature of the bias.
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