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ABSTRACT 
Controlling for variables implies conceptual distinctness between the control and zero-order 

variables. However, there are different levels of distinctness, some more subtle than others. 
These levels are determined by the theoretical context of the research. Failure to specify the 
theoretical context creates ambiguity as to the level of distinctness, and leads to the par- 
tialling fallacy, in which one controls for variables that are not distinct in terms of appropriate 
theory. Although this can occur in using any control procedure, it is especially likely to occur 
in multiple regression, where high-order partial regression coefficients are routinely obtained 
in order to determine the relative importance of variables. Four major ways in which these 
regression coefficients can be seriously misleading are discussed. Although warnings concerning 
multicollinearity are to be found in statistics texts, they are insufficiently informative to 
prevent the mistakes described here. This is because the problem is essentially one of substan- 
tive interpretation rather than one of mathematical statistics per se. 

The use of control variables is now a hall- 
mark of sophisticated research. That this is 
so is due mainly to Kendall and Lazars- 
feld's classic 1950 paper on partialling with 
categoric data, and to computers, which 
have removed restraints on calculating par- 
tials of almost any practical order, particu- 
larly for continuous data.2 However, there 
is a fallacy in the uncritical use of partials 
that is easy to commit and which becomes 
more likely the higher the order of the 
partial. The purpose of this paper is to de- 

scribe this fallacy and how it operates, 
especially in multiple regression, the case 
evidently most in need of clarification. 

THE PARTIALLING FALLACY 

The introduction of a control variable 
into a relationship always implies a theo- 
retical context, although in practice the 
context itself is often left unspecified. When 
experienced researchers fail to state the 
theoretical context explicitly, it is because 
they feel that it is sufficiently obvious. 
Often, they are right. Some researchers, 
however, have been misled by this silence, 
and they are unaware of how necessary it is 
to be conscious of the theoretical implica- 
tions underlying any use of control vari- 
ables. As though to emphasize this aspect 
of partialling, Kendall and Lazarsfield 
referred to the control variable as the "test" 
variable. This clearly implied that a hy- 
pothesis was being tested, and thereby that 
a theory, however modest, was being in- 
voked. Some researchers, however, engage 

1 Work on this paper was supported by research 
grant MH 10698-01, from the National Institute of 
Mental Health. The present version was part of a 
longer paper, "Issues in Multiple Regression and the 
Ecological Study of Delinquency" (Department of 
Social Relations, Johns Hopkins University, 1966), 
the remainder of which appeared in the American 
Sociological Review for December, 1967, under the 
title, "Issues in the Ecological Study of Delin- 
quency." Readers interested in detailed substantive 
examples of points made in the present paper may 
wish to consult that paper. Concerning the material 
covered here, the author is grateful to the following 
Johns Hopkins University colleagues, with whom 
valuable discussions were held at one time or an- 
other: Leon J. Gleser and Joseph L. Gastwirth, De- 
partment of Statistics; Carl F. Christ, Department 
of Political Economy; and Arthur L. Stinchcombe, 
E. 0. Schild, and James Fennessey, Department of 
Social Relations. This paper has also benefited from 
helpful comments made by the referees. 

2 Patricia L. Kendall and Paul F. Lazarsfeld, 
"Problems of Survey Analysis," Continuities in 
Social Research; Studies in the Scope and Method of 
"The American Soldier," ed. Robert K. Merton and 
Paul F. Lazarsfeld (Glencoe, Ill.: Free Press, 1950), 
pp. 133-96. 
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in what is actually atheoretical partialling, 
as though the only hypothesis to be tested 
were the purely statistical one of whether 
the zero-order relationship could survive the 
application of any conceivable control. 

The object, of course, is not simply to 
destroy an observed relationship but, rather, 
to see whether it can be destroyed by con- 
trolling for a variable that has been hy- 
pothesized to be potentially relevant and 
conceptually distinct within the theoretical 
context in which one has chosen to operate. 
Without a theory, however, there is no way 
of telling what is conceptually distinct and 
what is not. Consequently, variables are 
often introduced as controls that are not 
meaningfully different in terms of what 
would constitute an appropriate theory.3 So 
closely do these variables approach being 
identical with one of the variables already 
in the zero-order relationship that con- 
trolling for them becomes tantamount to 
partialling that relationship out of itself. 

An investigator studying the effect of 
socioeconomic status (SES) on delinquency, 
for example, could argue that median educa- 
tion is different from median rent and that 
it is reasonable to examine the relationship 

3Disputes over variables left uncontrolled can 
also result from this absence of explicit theory. One 
party may define a variable globally, for example, 
"urbanism," so that it includes the variables typical- 
ly correlated with living in a city, such as higher in- 
come and education, and therefore not control for 
the latter, whereas others may construe "urbanism" 
as a state of mind independent of income and educa- 
tion. Failure of the first party adequately to define 
urbanism in his study will precipitate attacks by the 
others on his omission of "obvious" controls. Actual- 
ly, the entire dispute would be over a matter of 
definition entirely, and it should be conducted, if at 
all, on the semantic-esthetic-theoretical level and 
not on the methodological level. Fear of being so 
attacked serves as an incentive for controlling every- 
thing the investigator can lay hold of, whether ap- 
propriate or not, when the appropriate remedy 
would be for him to specify clearly the working 
theory that is guiding his research. These working 
theories can legitimately be quite modest-indeed, 
given the state of social science, they can hardly 
avoid being modest. We suspect that unwarranted 
embarrassment over their modesty keeps investiga- 
tors from more often formulating working theories 
explicitly. 

between either variable and delinquency 
free of the effects of the other variable. This 
is true as far as it goes, but it implies an 
extremely narrow and highly specialized 
theoretical focus. This smaller question 
should not be confused with a hypothesis 
concerning the relationship between SES 
and delinquency when one has two or more 
equally valid indicators of SES. Although 
one might wish to inspect for some reason 
the partial correlations between quantita- 
tive ability and verbal ability, on the one 
hand, and academic achievement, on the 
other, this would be a poor way to test 
whether ability in general is related to 
academic achievement. Clearly, partialling 
implies distinctness between the control and 
zero-order variables, but as each of these 
two examples shows, for a given set of data 
there can be different levels of distinctness. 
On one level education and rent are indis- 
tinguishable as indexes of SES; on another 
level they are two different variables with 
somewhat different properties and sig- 
nificance. If in working with these variables 
the theoretical context is left implicit, the 
investigator may find that he has committed 
himself to a theory--or to a level of distinct- 
ness-that he did not intend and that he 
would not support upon deeper considera- 
tion. 

The fact that theory is quite undeveloped 
in his area does not excuse the researcher 
from deciding which of these major direc- 
tions he wishes his readers to follow in un- 
derstanding his results. Even an explicit 
postponement of the decision is preferable 
to an ambiguous presentation that could be 
construed either way. All too often, in- 
vestigators are so unclear in their own 
minds why they are partialling that it is im- 
possible to determine their intended level of 
distinctness. In this way they enjoy the 
methodological security of the microscopic 
level-in that one is always entitled to 
examine a partial if he wishes-while leav- 
ing their readers with impressions concern- 
ing the macroscopic level. Should attention 
be called to their indiscriminate partialling, 
they are apt to find themselves suddenly 
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convinced that they had intended the nar- 
rower focus all along. Naturally, potential 
critics of such studies are reluctant to take 
a stand when the question of whether there 
is even an issue is itself so slippery. Conse- 
quently, sociology that is conceptually 
blurred accumulates, unchallenged, in the 
literature. 

A somewhat more subtle version of the 
partialling fallacy is likely to be committed 
in multivariate studies that present all of 
the possible highest-order partials between 
each one of a large set of independent vari- 
ables and the same dependent variable. Ap- 
parently, this practice also draws inspiration 
from Kendall and Lazarsfeld, although the 
procedures they advocated are actually 
quite different in logic. Kendall and Lazars- 
feld's procedures assume knowledge concern- 
ing the presumed causal priority of the 
variables-they are not intended to pro- 
vide that knowledge. Roughly, they address 
the question, "Is variable A causally prior 
to B, or is it irrelevant?" and not the ques- 
tion, "Is variable A causally prior to B, or 
is B causally prior to A?" Yet it appears to 
be the latter question that is being posed 
when researchers calculate all possible 
highest-order partials to see which variable 
will emerge with the largest partial. Nothing 
in the Kendall and Lazarsfeld paper justi- 
fies using each independent variable in turn 
as a test variable for each other independent 
variable. 

For one thing, the outcome of such a pro- 
cedure is strongly influenced by small 
sampling or measurement errors when the 
independent variables are themselves highly 
correlated.4 Moreover, the "intervening 
variable" and "spurious correlation" inter- 
pretations are not the only ones possible 
when covariation proves controllable by 
introducing a third variable. The choice be- 
tween these two standard interpretations 
depends upon the causal ordering of the 
variables: whether the test variable is un- 

derstood to be causally intermediate be- 
tween the zero-order variables or whether 
it is antecedent to both of them. A third 
possibility, that it is to some degree causally 
identical with one of them, is completely 
overlooked in the classic discussions of par- 
tialling. Probably this is because no one 
expects researchers to employ such a vari- 
able as a control. That they might un- 
wittingly do so fails to be anticipated. Yet, 
given that typical validities and reliabilities 
of social science measures are in the neigh- 
borhood of .70 and .85, respectively, for 
instruments constructed so as to maximize 
these values, it is not surprising that the 
factorial and causal equivalence of variables 
sometimes goes unrecognized when the cor- 
relations between them are generally lower 
than these. 

When two variables are equivalent, they 
will both be equally valid to some degree, 
and controlling for one of them amounts to 
controlling for valid covariation. This makes 
as much sense as controlling for a parallel 
form of the same instrument. The presenta- 
tion of all possible highest-order partials is 
a sure indication that the researcher has not 
thought through the theoretical connections 
among his variables. Once embarked upon, 
such a mechanical procedure is quite apt to 
lead him to control for variables whose co- 
variation is largely valid. 

Finally, there is no statistical rule for at- 
tributing controlled covariation to the in- 
fluence of one rather than another of the 
independent variables, regardless of the dis- 
parity in size between their partial correla- 
tions. The question (of whether variable A 
is prior to B or B is prior to A) is simply not 
answerable by this means. 

An important property of the procedure 
of obtaining all possible highest-order par- 
tials is that the variables emerging with the 
largest partials will be those that are least 
redundantly represented. Conceivably, these 
could even be the variables that show the 
poorest zero-order associations with the 
common dependent variable. In such a case, 
an investigator is apt to conclude that his 
sophisticated statistical analysis has un- 

I For an excellent discussion of this point, see 
H. M. Blalock, Jr., "Correlated Independent Vari- 
ables: The Problem of Multicollinearity," Social 
Forces, XLII (December, 1963), 233-37. 
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covered the true importance of a variable 
that was otherwise obscured by the more 
superficial zero-order associations. Actually, 
nothing could be further from the truth. 
There is nothing more fundamental about 
a partial, as compared to a zero-order as- 
sociation, unless a good theory makes it so. 
The reasoning we are criticizing, for ex- 
ample, is reduced to the absurd when we 
realize that one could calculate all of the 
highest-order partials among the variables 
of a highly interrelated set and erroneously 
conclude, when the low partials fail to be 
significantly different from zero, that none 
of them was related to any other one. 

Although the temptation to commit the 
partialling fallacy is greater in the case of 
continuous data-where it is more con- 
venient to obtain partials of a high order- 
it should be emphasized that all control pro- 
cedures are equally susceptible, including 
those for categoric data and for experiments. 

SOME UNAPPRECIATED ASPECTS 
OF MULTIPLE REGRESSION 

When employing measures of association, 
investigators will calculate all possible 
highest-order partials for a given dependent 
variable only some of the time. Multiple re- 
gression, however, which is very popular in 
sociology, leads to highest-order partials 
automatically and invariably. For this 
reason, multiple regression is extremely sus- 
ceptible to the partialling fallacy. Even 
worse, it is possible to commit this fallacy in 
a number of different ways in multiple re- 
gression, and because the partial regression 
coefficient is more difficult to understand 
intuitively than the partial correlation co- 
efficient, these ways tend to be even more 
insidious. In the main body of this paper, 
we shall show in detail how this comes to be. 
But first, a few general remarks about the 
partial regression coefficient. 

We have indicated that, to the degree the 
variables of a set are highly interrelated, 
numerous, and conceptually similar, we ap- 
proach being able to produce a very small 
partial correlation between any two of them 
by controlling for the rest. Similar circum- 

stances affect the partial regression co- 
efficient in nearly the same way. This comes 
about as follows. 

As redundant independent variables are 
successively introduced into a regression 
problem, their common predictive value 
gets averaged, in a weighted manner, over 
all of their regression coefficients. As a re- 
sult, all of their regression coefficients de- 
cline in absolute value. At the same time, 
the multiple correlation increases only a 
trivial amount with each new variable, 
reflecting the fact that little new informa- 
tion is being added; that the multiple 
correlation cannot decrease indicates that 
the common predictive value is conserved, 
although it does get spread out over more 
and more regression coefficients, each be- 
coming smaller and smaller as new re- 
dundant variables are fed into the problem. 

Continuing with our examination of the 
regression coefficient, we note that, if at 
any point a new variable is added that is un- 
correlated with previous independent vari- 
ables, then the regression coefficients of the 
previous variables will be unaffected. Of 
course, it would be possible to then add 
more variables that are redundant with re- 
spect to this new variable but not redundant 
with respect to the earlier set, so that the 
regression coefficient of the new variable is 
reduced, but not the regression coefficients 
of the earlier variables. 

The argument developed above helps us 
to realize that among the independent vari- 
ables there could occur two or more subsets 
of variables, the members of which were 
redundant (strongly correlated) with vari- 
ables in their own subsets but relatively 
independent (weakly correlated) with re- 
spect to variables in other subsets. It 
becomes immediately apparent that, under 
these circumstances, the relative size of a 
variable's regression coefficient depends to 
a considerable extent upon the number of 
other variables in its subset. And if all vari- 
ables were redundant to the same degree 
with others in their subset, unrelated to the 
same degree with variables in other subsets, 
and all were equally related to the depend- 
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ent variable, then differences in the size of 
the regression coefficients between the vari- 
ables of one subset and those of another 
subset would depend entirely upon the 
relative numbers of variables in the two 
subsets. 

These conditions are, of course, quite 
special. However, they serve to bring into 
sharp relief processes that operate as well 
in the analysis of real data. In conjunction 
with these conditions, there are three others 
that also affect the regression coefficient. 
The main sections of this paper are devoted 
to illustrating all of these effects. 

The problems we are about to discuss are 
usually alluded to in statistics texts under 
the heading of "multicollinearity." How- 
ever, discussions of multicollinearity in sta- 
tistical texts tend to be tantalizingly brief. 
Typically, they emphasize only that as inde- 
pendent variables become closely related 
the standard errors of regression coefficients 
become extremely large, leading to estimates 
of the regression coefficients that are un- 
stable and hence unlikely to reappear even 
approximately in another sample from the 
same population.5 Often, mention is made 
also of the fact that perfect correlation be- 
tween two or more variables makes it im- 
possible to solve the normal equations 
uniquely (or to invert the correlation ma- 
trix) and that, to the extent lack of perfect 
correlation is purely the result of random 
error, the entire solution is simply a spuri- 
ous reflection of that error. (With double- 
precision computer arithmetic, rounding or 
truncation errors are no longer the problem 
they once were.) Both of these undesirable 
outcomes require extremely high correla- 
tions between independent variables. The 

effects that concern us here, however, can be 
produced as well by lower degrees of inter- 
correlation between predictor variables, and 
their main influence happens not to be ex- 
erted through the standard error of the re- 
gression coefficient. Statistics texts focus 
upon conditions of extremely high correla- 
tion because it is at that point that the re- 
sulting problems become most nearly sta- 
tistical ones. The issues discussed in this 
paper, however, are basically substantive in 
nature. Consequently, although continuous 
with the problem of multicollinearity as 
treated in statistical texts, they are not of 
statistical interest per se, and therefore 
they are not adequately treated in any sta- 
tistical source known to us. Persons sophisti- 
cated in statistics are quick to recognize 
this continuity, and they typically respond 
with a shrug when it is brought to their at- 
tention. However, we have known occasions 
when sophisticated consultants have advised 
clients to adopt procedures that lead to the 
very errors in multiple regression that this 
paper warns against, simply because the 
consultants were insensitive to the substan- 
tive implications of the problems brought to 
them. Since it is difficult to communicate 
complex problems to consultants so that 
they are alerted to all relevant implications, 
it is important that consumers of statistical 
advice be made aware of common pitfalls. 
Consultants, too, might benefit from having 
the following issues made more salient. 

To help distinguish between the different 
effects to be discussed, we shall hereafter 
use the term "redundancy" to refer to high 
correlation between two or more independent 
variables, regardless of the exact number of 
variables, and the term "repetitiveness" to 
refer to the number of redundant independ- 
ent variables, regardless of the degree of 
redundancy. This will enable us to empha- 
size either aspect of the situation, as neces- 
sary, in attempting to demonstrate just 
how, for one thing, multicollinearity oper- 
ates. 

The effect of differential repetitiveness.- 
In Table 1 we have created three correlation 
matrixes designed to display some of the 

6 In sociology, Blalock has devoted more atten- 
tion to this problem than anyone else (ibid.). Numer- 
ous other references to multicollinearity appear in 
his Causal Inferences in Nonexperimental Research 
(Chapel Hill: University of North Carolina Press, 
1964). See especially pp. 48, 66-67, and 87 if., for 
comments relevant to this paper's concerns. Other 
helpful warnings are to be found in Edward E. 
Cureton, "Validity," Educational Measurement, ed. 
E. F. Lindquist (Washington, D.C.: American 
Council on Education, 1951), pp. 690-93. 
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properties to which we refer. These matrixes 
include independent variables only. The first 
one, matrix A, illustrates the effect of un- 
equal repetitiveness on the regression co- 
efficient. All five of the independent vari- 
ables constituting matrix A are equally good 
predictors, one at a time, of the dependent 
variable, in that all correlate .60 with that 
variable. All are redundant to the same de- 
gree, .80, with others in their subset, and are 

portance of the variables when we do not 
even know what these variables are and 
when they all have exactly the same corre- 
lation with the dependent variable. 

In the last three columns of Table 1 we 
present the standard errors of the regression 
coefficients, based upon a hypothetical sam- 
ple size of 100, and the associated t-tests of 
the hypothesis that each regression coef- 
ficient is equal to zero. These standard 

TABLE 1 

THE EFFECTS OF DIFFERENTIAL REPETITIVENESS (BASED ON HYPOTHETICAL SAMPLES OF 100) 

Example Correlations between Independent Variables 7yj byg Sb5 Si p < 

Matrix A: . .8 .8 .2 .2 .6 .19 .11 1.71 N.S. 
Subsets of .8 . . . 8 . 2 . 2 .6 .19 .11 1.71 N.S. 
3 and 2 .8 .8 . . .2 .2 .6 .19 .11 1.71 N.S. 

.2 .2 .2 . . .8 .6 .27 .10 2.70 .01 

.2 .2 .2 .8 . . .6 .27 .10 2.70 .01 

Matrix B: . . .8 .8 .2 . 2 .2 .6 .16 .08 1.95 N.S. 
Subsets of .8 .. .8 .2 .2 .2 .6 .16 .08 1.95 N.S. 
3, 2, and1 . 8 .8 . . .2 . 2 .2 .6 .16 .08 1.95 N.S. 

.2 .2 .2 ...8 .2 .6 .23 .07 3.13 .01 

.2 .2 .2 .8 .. .2 .6 .23 .07 3.13 .01 

.2 .2 .2 .2 .2 ...6 .41 .05 9.03 .001 

Matrix C: ...8 .8 .8 .2 .2 .2 .2 .6 .12 .09 1.41 N.S. 
Subsets of .8 .. .8 .8 .2 .2 .2 .2 .6 .12 .09 1.41 N.S. 
4, 3, andl1 .8 .8 .. .8 .2 .2 .2 .2 .6 .12 .09 1.41 N.S. 

.8 .8 .8 .. .2 .2 .2 .2 .6 .12 .09 1.41 N.S. 

.2 .2 .2 .2 ...8 .8 .2 .6 .16 .08 1.97 N.S. 

.2 .2 .2 .2 .8 .. .8 .2 .6 .16 .08 1.97 N.S. 

.2 .2 .2 .2 .8 .8 .. .2 .6 .16 .08 1.97 N.S. 

.2 .2 .2 .2 .2 .2 .2 .. .6 .40 .05 8.83 .001 

Note.-Multiple correlations, when r,5j = A6 for Matrix A, R =.815; Matrix B, R = .906; Matrix C, R = .910. The 1-tests 
are based on more decimal places than are shown in the table. 

unrelated to the same degree, .20, with those 
of the other subset. However, one subset 
contains three variables, and the other con- 
tains only two variables. The effect of this 
inequality is to create a substantial differ- 
ence between the standardized regression 
coefficients of the two subsets; this differ- 
ence is produced entirely by the difference in 
density of sampling between the two do- 
mains of content implied by the two sub- 
sets.6 Obviously, it cannot be attributed in 
any meaningful sense to the relative im- 

errors, based on a reasonable sample size, 
are not unduly large, and there is little 
difference between the standard errors of 
the two subsets. However, the t-tests for the 
subset of three fail to reach significance, 
whereas those for the subset of two are sig- 
nificant. This outcome, again, is due entirely 

6 All of the regression coefficients discussed in 
this paper are standardized ones. Often, such , 
weights are accompanied by an asterisk, but since 
there can be no confusion on this point, we omit the 
asterisk. 
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to the difference in density of sampling 
variables, and it comes about mainly 
through the difference in the magnitude of 
the regression coefficients rather than 
through the slight difference in their 
standard errors. 

Matrix B illustrates the effect of adding a 
third subset containing only one variable. 
Because this one variable is not repetitive 
with any other, its regression coefficient is 
much larger than the rest, although it, too, 
is no more strongly correlated with the de- 
pendent variable than any other variable. 
The results of the t-tests follow accordingly. 
Since this new variable is not redundant 
with variables of the other two subsets, 
their regression coefficients are hardly af- 
fected by its presence. An incidental effect 
of the new variable is to raise the multiple 
correlation from .815, for matrix A, to .906, 
for matrix B; and the slight decrease in the 
size of the standard errors from their values 
for matrix A results from this improvement 
in the multiple correlation. It is true here 
that the standard error of the new variable 
is approximately only half the size of the 
standard errors of the other variables; how- 
ever, the fact that the regression coefficients 
of the subset of three are not significant 
again, whereas those for the subset of two 
are significant still, is determined far more by 
the relative size of the regression coefficients 
than by the relative size of the standard 
errors, Both the effect on the standard error 
and on the regression coefficient favor the 
statistical significance of the less repetitive 
variables, but it is the regression coefficient, 
of course, upon which interpretations of 
relative importance are based, statistical 
considerations aside. 

Matrixes A and B, with their subsets of 
unequal numbers of equally good predictors, 
demonstrate that if a particular construct, 
such as socioeconomic status, is represented 
by many variables, and another construct 
by one or a few variables, the predictive 
value of SES would be spread thinly over 
several regression coefficients, while the pre- 
dictive value of the other construct would 
be concentrated in only one or two coef- 

ficients, thus giving the impression that the 
SES variables were less strongly related to 
the dependent variable than the variables 
representing the second construct.7 Under 
circumstances such as these, it could even 
happen that the regression coefficients of the 
construct having the weaker relationship 
with the dependent variable would attain 
statistical significance when the remainder 
did not, simply as a result of its being less 
repetitively represented. For example, in 
matrix C of Table 1, the correlation between 
the eighth variable (a subset of one) and the 
dependent variable could drop as low as .40, 
and it would still yield a significant regres- 
sion coefficient of .187, which would be 
higher than those associated with variables 
accounting for more than twice as much of 
the dependent variable's variance. The re- 
gression coefficients of each of the first four 
variables would equal, in this case, .133, and 
of each of the next three variables, .174. 

Ironically, the more important domain, 
in terms of total predictive value, is apt to 
be the one that is repetitively oversampled, 
both because its effects are likely to be more 
pervasive and because researchers will be 
inclined to devote more attention to it. The 
outcome of reducing the correlation between 
just the eighth variable and the dependent 
variable in matrix C to .40 indicates, equally 

7 An example of this effect is discussed in Gordon, 
"Issues in the Ecological Study of Delinquency," 
op. cit. (n. 1 above). It is drawn from a study by 
Bernard Lander in which four SES variables were 
included with two supposed anomie variables (see 
his Towards an Understanding of Juvenile Delin- 
quency [New York: Columbia University Press, 
1954]). Within the SES subset, the average absolute 
correlation was .77; within the anomie subset, it was 
.76. Redundancy within sets was thus nearly identi- 
cal. The intrasubset correlations in our examples are 
intended to approximate these values. Although the 
absolute correlations between Lander's two subsets 
averaged .53, rather than the .20 for matrix A, this 
stronger relation between his subsets, if substituted 
into matrix A, would reduce the difference between 
the two sets of regression coefficients in our example 
by only 34 per cent. This tendency in Lander's 
matrix toward reduction in contrast, moreover, is 
offset by the greater repetitiveness within his larger 
subset, which contained four variables instead of the 
three in the larger subset of matrix A. 
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ironically, that odds-and-ends type variables 
of less consequence-included perhaps more 
because they happened to be at hand than 
because of their theoretical relevance- 
could then appear to be the more important. 

Matrix C, it will be noted, was produced 
simply by adding another similar variable 
to each of the two major subsets of matrix 
B. It is intended to illustrate what is wrong 
with an attempt to test a hypothesis con- 
cerning the relative importance of two types 
of variable (represented by the two major 
subsets in matrixes A and B) by adding to 
the regression two new variables deemed to 
be representative of each type.8 We see from 
the regression coefficients of matrixes B and 
C that, if these new variables were truly 
typical of their type, the outcome could not 
possibly be otherwise. If one pie is to be 
divided among a larger number and another 
pie among a smaller number, no matter how 
often we add one to the number for each pie, 
it will never alter the fact that the portions 
from the first pie will be smaller than those 
from the second. Similarly, the regression 
coefficients of the larger subset in matrix C 
continue to be smaller than those of the 
smaller subset, so that the status quo de- 
rived from matrix B remains essentially un- 
affected. 

The iffect of heterogeneity among correla- 
tionzs with the dependent variable.-In the ex- 
amples of matrixes A, B, and C, all of the 
predictors were equally correlated with the 
dependent variable. Obviously, even if these 
correlations were equal in the population, 
they would not all be exactly equal in a 
sample, and there could even be real differ- 
ences among their population values that 
were nevertheless so small as to lead us to 
regard them subjectively as practically 
equal. Whether or not we would regard 
them as equal, differences among these cor- 

relations do affect the regression coefficients, 
especiallv when there are redundant subsets 
among the predictors. However, the magni- 
tude of the effect depends heavily upon 
whether the differences appear between 
variables in different subsets or between vari- 
ables in the same subset. This is illustrated 
in Table 2, which shows what happens when 
the correlations with the dependent vari- 
able for matrix A, all of which were .60, are 
systematically varied. Column 1 simply re- 
peats, for purposes of comparison, the rele- 

TABLE 2 

THE EFFECTS OF FOUR DIFFERENT SETS OF 
CORRELATIONS WITH THE DEPENDENT VARI- 
ABLE WHEN THE INDEPENDENT VARIABLES 
ARE INTERCORRELATED AS IN MATRIX A 

SET OF CORRELATIONS WITH DEPENDENT 
VARIAB3LE, ryi 

VARIABLE _ 

(1) (2) (3) (4) 

.......... 60 .55 .60 .60 
2 ...... .60 .55 .60 .60 
3 ...... .60 .55 .60 .60 
4 ...... 60 .60 .55 .60 
5 ...... .60 .60 .55 .55 

Corresponding Regression Coefficients, bv, 

1 ......... . 19 .17 .19 .19 
2 ......... .19 .17 .19 .19 
3 ......... . 19 .17 .19 .19 
4 .... .27* .28* .24* .38* 
5 ......... 27* .28* .24* .13 

Standard Errors of Regression 
Coefficients, sbv, 

4 . ........ .11 .12 .12 .11 
2 .......... .11 .12 .12 .11 
3 .......... .11 .12 .12 .11 
4 ......... .10 .11 .11 .10 
5 .......... .10 .11 .11 .10 

Corresponding Multiple Correlation 
Coefficients, R5.12346 

.815 .781 .783 .803 

* Significant at .05 level or better. All tests have 94 degrees 
of freedom, based on hypothetical samples of 100. 

8 For examples, see David J. Bordua, "Juvenile 
Delinquency and 'Anomie': An Attempt at Replica- 
tion," Social Problems, VI, No. 3 (1958-59), 230- 
238; Roland J. Chilton, "Continuity in Delinquency 
Area Research: A Comparison of Studies for Balti- 
more, Detroit, and Indianapolis," American Socio- 
logical Review, XXIX, No. 1 (1964), 71-83; and the 
discussion of these papers in Gordon, op. cit. 
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vant data for the original matrix A problem. 
It will be recalled that matrix A consisted of 
a subset of three and a subset of two equally 
redundant predictors. Columns 2 and 3, re- 
spectively, show the effect of lowering the 
correlations with the dependent variable to 
.55, first for just the entire subset of three, 
and then for just the entire subset of two. 
In either case, the effect on the regression co- 
efficients is small However, when just one 
of the correlations involving a variable from 
the subset of two is lowered to .55, so that a 
difference in their relation with the de- 
pendent variable now appears between vari- 
ables within the same redundant subset, the 
effect on the regression coefficients is pro- 
nounced (see column 4). In this situation, 
the regression coefficient of the variable with 
the higher correlation (here, the fourth vari- 
able) acquires most of the predictive value of 
its subset. In our example, its regression co- 
efficient so closely approaches the values 
held by those for the subset of one in ma- 
trixes B and C that it might be said to be- 
have as though it actually were a subset of 
one. Once again we point out that the effect 
on the standard errors of the regression co- 
efficients, in any of the situations depicted 
in Table 2, is so small that it often fails to 
appear within two decimal places. 

Our attitude toward the greater promi- 
nence given the fourth variable over its 
subset partner, the fifth variable, by this 
slight difference in their correlations with 
the dependent variable, could well be that 
this is quite proper. After all, if a dependent 
variable correlates slightly better with one 
of two variables that are themselves highly 
correlated with each other, it could mean 
that it is fundamentally more like that 
variable than like the second. Even so, the 
question could be raised as to whether a 
mode of analysis that transforms an 11:12 
relationship (in the correlations with the de- 
pendent variable) or a 5:6 relationship (in 
terms of variance accounted for) into a 1:3 
relationship (in the regression coefficients) 
provides the most helpful picture of the 
data. In any event, our acceptance of this 
outcome would be sharply revised if the 

outcome were based on observed values that 
did not reflect the true parameter values- 
for example, if the true correlations with the 
dependent variable were equal, but the ob- 
served correlations were not, or if the ob- 
served correlations reversed the direction of 
the true difference between the absolute cor- 
relations of two predictors with the de- 
pendent variable.9 

It is difficult to say how likely these kinds 
of sampling fluctuations are to occur in prac- 
tice. However, we might note that, for an 
observed correlation of .60 and a sample size 
of 100, the .95 confidence interval ranges 
from .46 to .71. In the present context, it 
suffices to point out that their effects on re- 
gression coefficients, should they occur, can 
be surprisingly strong. 

Even when differences like those in 
column 4 of Table 2 reflect the true values of 
correlations, however, there is no reason to 
be complacent concerning their effect vis-a- 
vis the regression coefficients of variables in 
other subsets. In our example, the fourth 
variable is not correlated any more strongly 
with the dependent variable than the three 
variables constituting the larger subset, yet 
its regression coefficient is twice as large as 
any of theirs. In columns 2 and 3 of Table 2, 
we showed that, even when correlations 
with the dependent variable differed be- 
tween entire subsets, the effect was not so 
great as this. This helps us to realize that if 
the correlation of the fourth variable with 
the dependent variable were in fact some- 
what larger than the corresponding correla- 
tions of the subset of three, we would be 
tempted to regard its much larger regression 
coefficient as an appropriate reflection of 
this stronger relation with the dependent 
variable. In actuality, the greater part of the 
magnitude of the difference between regres- 
sion coefficients would be due to differential 
relations with the dependent variable within 
the subset of two and would have nothing 
whatsoever to do with variables in the sub- 
set of three. Just how much of the difference 

9 It should be kept in mind that we are concerned 
with the absolute values of the correlations with the 
dependent variables, and not their algebraic values. 
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between regression coefficients would be due 
to differences within subsets and how much 
to differences between subsets would de- 
pend on the particular magnitudes involved, 
of course. Our point is simply that a very 
substantial part of this difference may be 
due to causes that are quite irrelevant to 
giving an accurate picture of the relative 
importance of the variables. 

Of course, these differences in correlation 
with the dependent variable could appear 
among the variables either of the more 
repetitive (larger) subset or of the less re- 
petitive (smaller) subset. In either case, they 
would tend to concentrate the predictive 
value of the entire subset in the regression 
coefficients of a smaller number of variables. 
Should the highest correlation with the de- 
pendent variable be attained by only one 
predictor, then the subset's predictive value 
would tend to concentrate in just one re- 
gression coefficient. Depending on whether 
such differences appeared in connection with 
the smaller or the larger subset, they would 
either add to or detract from the effect of 
differential repetitiveness on the variables 
involved. 

The effect of unequal redundancy between 
subsets.-Obviously, the degree of redun- 
dancy (or level of internal correlation) can 
differ between subsets that are nevertheless 
clearly recognizable by their high internal 
correlations and which are identical with 
respect to repetitiveness (the number of 
predictors involved). This constitutes the 
simplest situation of the four that we shall 
discuss. 

If all predictors correlate equally with the 
dependent variable-thus eliminating this 
source of disturbance-then unequal re- 
dundancy will produce larger regression co- 
efficients, having smaller standard errors, 
for the variables in the less redundant sub- 
set. Although the resulting effects on both 
the regression coefficient and its standard 
error tend to be moderate, they are not in- 
significant. For example, in five out of six 
hypothetical problems that we constructed, 
based upon sample sizes of 100, these effects 
combine to prevent the regression coef- 

ficients of the more redundant subset from 
attaining significance. In all cases, those of 
the less redundant subset were significant. 
Table 3 presents the results from these six 
problems, which were varied systematically 
as to difference in redundancy (two levels) 
and strength of correlation between the sub- 
sets (three levels). It can be seen that the 

TABLE 3 

THE EFFECTS OF TWO LEVELS OF UNEQUAL 
REDUNDANCY AT THREE LEVELS OF BE- 
TWEEN-SUBSET CORRELATION IN A FOUR- 
VARIABLE MATRIX (ALL CORRELATIONS WITH 
THE DEPENDENT VARIABLE HAVE BEEN SET 
EQUAL TO .60) 

CORRELATIONS BETWEEN 

CORRELATIONS wITHIN EACH SUBSETS, 7r13=r14=r23= r24 
TwO-VARIABLE SUBSET 

. 2 .5 .6 

Regression Coefficients, 
byi= by2; bys= bv4 

Subset I: r12= . 7 ....... .288 .234 .222 
Subset II: r34= .8 ....... .264 .204 .180 

Difference ........... .024 .030 .042 

Subset I: rs2= .7 ....... .288 .246 .228 
Subset II: r34= .9 ....... .252 .192 .156 

Difference ........... .036 .054 .072 

Standard Errors of Regres- 
sion Coefficients, 

Sboi = sbv2; Sb.3 = sb54 

Subset I: rl2=.7 ....... .08 .10 .11 
Subset II: r34 = 8....... .10 .12 .13 

Subset I: rs2=. 7....... .09 .10 .11 
Subset II: ru = .9 ....... . 14 .16 .18 

I-Tests of Regression 
Coefficients 

Subset I: r12= .7 ........ 3. 4* 2.3* 2. 0* 
Subset II: r34= .8 ....... 2.7* 1.7 1.4 
Subset I: r12= . 7 ....... 3.4* 2.4* 2. 0* 
Subset II: r34= .9 ....... 1.8 1.2 0.9 

* Significant at .05 level or better. All tests have 95 degrees 
of freedom, based on hypothetical samples of 100. 
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effects grow stronger (a) the greater the dif- 
ference in redundancy between the subsets, 
and (b) the stronger the correlation between 
subsets. 

It is somewhat of a challenge to devise a 
plausible illustration of this particular effect 
that would also be intuitively regarded as 
leading to an obviously erroneous conclu- 
sion.10 Imagine, however, a battery of predic- 
tors of success in some performance that 
requires both verbal and mathematical 
ability. Assume that the number of verbal 
measures equals the number of mathe- 
matical measures, that the correlations 
between the two subsets of measures are 
uniform, and that all correlate equally well 
with the dependent variable. 

In this situation, it could occur that all 
of the verbal measures correlate more highly 
with each other than do the mathematical 
measures with each other, as a result of the 
more specific nature of the latter. For ex- 

ample, a course in analytical geometry 
could be more different from one in prob- 
ability theory than a course in history from 
one in English literature. (In factor-analytic 
terms, a greater part of the valid variance 
of the mathematical measures would be 
represented in specific factors and a smaller 
part in a common factor than in the case of 
the verbal measures. To eliminate the possi- 
bility of a strong general factor that could 
absorb even the specifics, it might be neces- 
sary to stipulate that the population be rela- 
tively homogeneous in intelligence.) 

At first glance, it seems appropriate that 
the greater predictive value of the mathe- 
matical measures would be reflected in re- 
gression coefficients larger than those of the 
verbal measures. However, as the result of 
crowding into the analysis multiple meas- 
ures of a domain that is more constricted 
than the mathematical domain-a quite 
reasonable step from the standpoint of en- 
hancing reliability-it could happen that 
none of the regression coefficients belonging 
to the verbal measures would reach sta- 
tistical significance. If one were unaware of 
the more fundamental dimensions underly- 
ing the predictors, of how they were organ- 
ized, of the difference in redundancy, and of 
the effect of these upon a regression analysis, 
one might easily conclude that verbal abil- 
ity was less important than mathematical 
ability, overlooking the fact that if only one 
verbal measure had been employed it surely 
would have been significant. Thus, differ- 
ences in redundancy can bring about exact- 
ly the same result caused by differences in 
repetitiveness. The main difference is that 
the illusion of fairness is greater for the pure 
form of the present effect, in that the num- 
ber of variables is the same for each domain 
(or subset). Both effects, of course, can be 
simultaneously operative. 

The effect of other possible variations in 
correlations.-It is only when correlations 
are uniform within each separate subset, and 
uniform between them as well, so that sub- 
set boundaries are clearly defined, that we 
can conveniently speak of redundancy and 
of differences in redundancy between sub- 

10 An approximate example can be found in the 
data of Lander, Bordua, and Chilton (all cited 
above), where we can identify equal-sized subsets 
of unequal within-set redundancy by considering 
variables in pairs. These pairs are made up on the 
basis of each variable's highest correlation (in abso- 
lute value) with any other variable. Just as for 
sociometric choices, these relations may or may not 
be reciprocal. Thus, in their three studies their four 
SES variables form two stable and reciprocal sub- 
sets, but their two anomie variables do not. One 
SES subset is comprised of education and rent (r = 
.89, .78, and .89, for each study in order), the other 
of substandard housing and overcrowding (r = .86, 
.83, and .93). In Lander's study only, the two anomie 
variables represent each other's most highly corre- 
lated variable, and then, in contrast to the values of 
.89 and .86 for the SES pairs, their correlation is 
only -.76. Consequently, on a pairwise basis, the 
anomie subset for Lander's study is less redundant 
than the SES subsets. To an even greater degree, 
this disparity appears in the Bordua and Chilton 
studies too, so that the highest correlation of any 
anomie variable is always less than the highest cor- 
relation of any SES variable. 

It should be emphasized that this illustration 
from real data focuses only on the correlations 
within these subsets of size two as a source of re- 
dundancy, as though the between-set correlations 
were all equal. In fact, in the data from the three 
studies, they are not all equal. As will be shown in 
the next section of this paper, this complicates the 
situation considerably. 
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sets. Even slight departures from uniform- 
ity within any one of these groups of correla- 
tions will affect the regression coefficients in 
ways that no measure of redundancy can 
anticipate. 

Three plausible measures of redundancy 
are: (1) the average absolute correlation of 
each predictor with the rest, (2) the average 
of the squares of correlations, and (3) the 
squared multiple correlation (SMC) of each 
predictor with all of the remainder. (Obvi- 
ously, if the correlations between subsets are 
all equal, only the off-diagonal correlations 
within subsets need be considered for the 
averages.) The two averages have the ad- 
vantage of being unaffected bv the number 
of variables when the correlations are uni- 
form, thus enabling us to define redundancy 
independently of repetitiveness. Moreover, 
they are easy to calculate. Because the 
SMC incorporates the contributions of re- 
dundancy-in the pure sense-and of repeti- 
tiveness too, it summarizes accurately the 
total overlap of each predictor with the 
others. However, this quality makes it un- 
suitable for drawing a heuristic distinction 
between redundancy and repetitiveness. 

Even when the correlations with the de- 
pendent variable are all identical, the more 
sophisticated SMC measure does not fully 
determine the relative strengths of the re- 
gression coefficients. Those familiar with 
the computations will recognize that this is 
because the SMC depends upon only the 
value of a main diagonal element of the in- 
verse of the matrix of correlations between 
predictors (see equation [6], below). It is 
with the variations among the predictor cor- 
relations underlying this further inde- 
terminacy that this section is concerned. 
Since subsets with precise boundaries rarely 
occur in real data, the manner of character- 
izing this variation is somewhat arbitrary. 
This section, therefore, could quite reason- 
ably have had many other headings, such as 
"variations within subsets" and "variations 
in the correlations between subsets." 

It is best to proceed by introducing ex- 
plicitly the inverse of the correlation matrix. 

Many persons performing multiple regres- 
sion will be aware that there exist several 
methods for computing the regression co- 
efficients, all of them tedious. They are 
probably also aware, nowadays, that, ex- 
cept for certain special cases, any rec- 
tangular matrix can be inverted and that 
this also is a tedious procedure. Few of 
them, however, will ever have seen an in- 
verse matrix-fewer still will have actually 
inverted a matrix by hand computation. 
This is unfortunate because matrix inversion 
is one of the ways to solve multiple regres- 
sion problems and, as it turns out, the ele- 
ments of the inverse matrix can be expressed 
in an intuitively meaningful way that en- 
ables one to observe what is going on in a 
multiple regression better than at any other 
stage of the calculations. 

For three independent variables, the re- 
gression coefficients can be obtained from 
the following matrix multiplication 

Cll C12 C13 rl byl.23 

C21 C22 C23 ry2 = b2. , (1) 

C31 C32 C33 rV3 by3.12 

where the ryi are the correlations with the 
dependent variable, and the C's are elements 
of the inverse matrix." The matrix multi- 
plication simply expresses the following 
three operations in ordinary algebra: 

C,r1r, + C12ry2 + C13ry3 = byi.23, 

C21ryl + C22r,2 + C23ry3 = by2.13, (2) 

C31ryl + C32ry2 + C33ry3 = by3.12 . 

In view of our simplifying assumption that 
all of the correlations with the dependent 
variable are equal or, in other words, that 
ryl = ry2 = ry3 = ry., each of the above 
three operations could be expressed in the 

11 Except for omitting asterisks for the standard- 
ized regression coefficients, our notation follows that 
employed in Helen M. Walker and Joseph Lev, 
Statistical Inference (New York: Henry Holt & Co., 
1953), pp. 332-34. This reference also provides a 
fuller development of the matrix algebra of multiple 
regression, as well as a parallel presentation in ordi- 
nary algebra. 
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following form, here illustrated only for the 
first: 

ry,(C11 + C12 + C13) = byl.23. (3) 

Inasmuch as the correlations with the de- 
pendent variable are not now of interest, it 
is clear that the sum of the elements in each 
row wholly determines the regression co- 
efficient of the variable associated with that 
row of the inverse (and also of the correla- 
tion) matrix. Consequently, the impact of 
just the independent variables on the regres- 
sion coefficient could be expressed in the 
form of such a sum for each row. At some 
later point, these sums could then be scaled 
down to true regression coefficients simply 
by multiplying each of them by ry6. 

As it stands, the inverse matrix is not 
very helpful. Its elements have no immedi- 
ately apparent interpretation, and the 
familiar meaning attached to the original 
correlation coefficients will have become 
hopelessly obscured in the course of the in- 
volved calculations necessary to obtain the 
inverse. True, the relative magnitudes of 
the elements and their locations in the 
matrix will suggest points at which things 
are happening of relatively greater or lesser 
importance-but the nature of these hap- 
penings will be unknown. 

However, each element of the inverse 
can be expressed in terms of more familiar 
quantities. Let us take first the main 
diagonal elements, Cii, for our three-variable 
example. If Si.jk is used to represent the 
square root of the residual variance left 
when any independent variable is predicted 
by all of the remaining independent vari- 
ables or, in other words, if 

Si.jk = \/I -Rt.k t4) 

where Ri.Jk represents the multiple correla- 
tion, then Cii is the reciprocal of this 
residual variance, or 

Cii= 1 (5) 
( Si. jk) ( Si. jk) 

It might be pointed out, incidentally, that 
one can obtain all of the SMC's for a group 

of variables from the inverse matrix, since 
for any variable i, 

SMC=1-C (6) cii. 
For true correlation matrixes, that is, 

matrixes that observe the requirements for 
consistency among correlation coefficients, 
Cii will always be positive."2 Its range is from 
1.0 to infinity. 

An off-diagonal element, Cij, is defined as 
follows: 

t Si.jk) ( Sj.ik) ( (7) 

Thus, the numerator contains a familiar par- 
tial correlation coefficient, of an order that 
is always two less than the order of the 
matrix. Since we are now ignoring correla- 
tions with the dependent variable, the minus 
sign in formula (7) indicates that, when the 
partial correlation in the numerator is posi- 
tive, this quantity will be subtracted from 
the main diagonal in forming the row sum, 
thus reducing our hypothetical regression 
coefficient. Of course, in real applications, 
the magnitudes and signs of the correlations 
with the dependent variable would have to 
be taken into account, in accordance with 
formula (2). It might be pointed out that 
the 1.0 in the numerator of the main 
diagonal entries, Cii, is consistent with the 
definition of the Cii, in that the partial cor- 

12 On the consistency relation, see ibid., pp. 344- 
45. This consistency requirement governs the con- 
struction of the examples used in this paper, which 
were created simply by writing down correlation co- 
efficients and then inverting the resulting matrixes 
to obtain the usual multiple regression statistics. It 
was not necessary to generate the raw data implied 
by the correlations, although much trial and error 
was involved in arriving at suitable illustrations. 
Some care is required, however, in order to avoid 
examples that violate the consistency rule. The ap- 
pearance of negative elements in the main diagonal 
of the inverse is one indication that consistency has 
been violated. A negative element there implies an 
SMC greater than 1.0 and, hence, "negative" residu- 
al variance. One should also avoid creating rj,i that 
are so large that a multiple correlation greater than 
1.0 is implied for the example problem. 
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relation of a variable with itself is always 

Inversion of the appropriate correlation 
matrix, incidentally, provides a convenient 
computer method for obtaining all of the 
highest-order partial correlations between 
variables of a set simultaneously, according 
to the formula 

7ij.kl ... etc. = (8) 
-\ICiiCjj, 

We can now examine the elements of the 
inverse matrix, together with their more de- 
tailed versions as expressed in formulas (5) 
and (7), in order to see what is going on 
within certain problems in which small dif- 
ferences in correlations between inde- 
pendent variables produce disproportionate- 
ly large differences in regression coefficients. 

Table 4 presents three matrixes. The cor- 
relations appearing in the first of these, 
matrix L, resemble closely the correlations 
between the four variables in an example of 
real data.14 This matrix, as did the original, 
contains two clearly delineated two-variable 
subsets. The only alteration is that we have 
substituted a correlation of .71-approxi- 
matelv their mean-for each of the four 

heterogeneous correlations between the two 
two-variable subsets in the original. By then 
introducing only a very simple change into 
the between-set correlations, we can retain 
the relevance of real data, without their 
complexity, while observing the effect of 
variation among these correlations. This 
change appears in matrix M, where the cor- 
relations of the first variable with the third 
and fourth have been raised from .71 to .73. 
In each of the examples based on the three 
matrixes in Table 4, the hypothetical corre- 
lations with the dependent variable have 
been set equal to .50. 

In matrixes L and M the internal correla- 
tions of the less redundant subset are .86 and 
of the more redundant, .89. In L, the larger 
regression coefficients naturally accompany 
the variables of the less redundant subset. 
This is the effect of unequal redundancy that 
was discussed earlier. Before going on to the 
more complicated matters of this section, 
let us note how this comes about, first by 
examining the ordinary inverse, and then 
the detailed inverse. 

In the ordinary inverse, we note that the 
between-subset Cii are all equal, at -.474. 
Therefore, only the within-subset Cij need 
be considered. Of these, we look first at the 
main diagonal elements. C11 and C22, of the 
more redundant subset, are both larger than 
C33 and C44. This would produce larger re- 
gression coefficients for the more redundant 
subset, an effect opposite to that which 
actually occurs. The remaining within-sub- 
set elements, C12, C21, C34, and C43, which 
carry negative signs, determine the final 
outcome. This is because C12 and C21 are 
both absolutely larger than C34 and C43. In 
the pure case of the effect, this difference is 
always large enough to more than offset the 
difference between the two sets of main 
diagonal elements. Consequently, the more 
redundant subset will always have the 
smaller regression coefficients. The detailed 
inverse makes it clear why this is so. 

The difference between the two sets of 
main diagonal elements reflects the greater 
overlap (higher SMC's) of the more re- 
dundant variables. In the detailed inverse, 

13 A derivation of equations (5) and (7) for the 
case with two independent variables, but for un- 
standardized coefficients, is given in A. Hald, Sta- 
tistical Theory with Engineering Applications (New 
York: John Wiley & Sons, 1952), pp. 640-42. Be- 
cause Hald uses only two variables, it is not readily 
apparent that many of the terms are actually 
partials when more than two variables are involved. 
The conversion to standardized data, however, is 
quite simple. Equation (6) is derived in K. A. 
Brownlee, Statistical Theory and Methodology in Sci- 
ence and Engineering (New York: John Wiley & 
Sons, 1965), p. 450. From this, equation (5) is readi- 
ly obtained. Equation (8) is stated without proof in 
Robert G. D. Steel and James H. Torrie, Principles 
and Procedures of Statistics (New York: McGraw- 
Hill Book Co., 1960), p. 301. See also Cyril H. Goul- 
den, Methods of Statistical Analysis (New York: 
John Wiley & Sons, 1952), chap. viii. From this 
equation, both equations (5) and (7) can be obtained 
with the help of (6). We regret that, although these 
relationships are fairly well known, we cannot cite 
a proof for the general case of equation (7). 

14 The reference is to the four SES variables in 
Lander, op. cit. 
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TABLE 4 

MATRIXES L, M, AND N; EXAMPLES OF THE TIPPING EFFECT 

(ryi = .50; N = 100) 

Matrix Correlations and Inverse of Correlations between b b 
t < 

Independent Variables s Sb Pi 

L: Correlations... ... .89 .71 .71 .146 .195 .75 N.S. 
.89 ... .71 .71 .146 .195 .75 N.S. 
.71 .71 ... .86 .156 .176 .89 N.S. 
.71 .71 .86 ... .156 .176 .89 N.S. 

L: Inverse .5.166 -3.925 - .474 - .474 ........ ........ ....... ...... 
-3.925 5.166 - .474 - .474 ........ ........ ....... ...... 
- .474 - .474 4.202 -2.941 ........ ........ ....... ...... 
- .474 - .474 -2.941 4.202 ........ ........ ....... ...... 

L: Detailed in- 
verse* + 1 .760 .102 .102 

(.4400)2 (.4400) (.4400) (.4400) (.4879) (.4400) (.4879) 

_ .760 1 .102 .102 
.1936 ? (.4400)2 (.4400)(.4879) (.4400)(.4879) 

.102 .102 1 .700 
.2147 .2147 (.4879)2 (.4879)(.4879) 

.102 .102 .700 1 
.2147 .2147 .2380 (.4879)2 

M: Correlations. . ... .89 .73 .73 .116 .199 .58 N.S. 
.89 ... .71 .71 .176 .192 .91 N.S. 
.73 .71 ... .86 .156 .176 .89 N.S. 
.73 .71 .86 ... .156 .176 .89 N.S. 

M : Inverse 5.397 -3.920 - .622 - .622 ........ ........ ....... ....... 
-3.920 5.032 - .382 - .382 ........ ........ ....... ....... 
- .622 - .382 4.230 -2.913 ........ ........ ....... ....... 
- .622 - .382 -2.913 4.230 ................ ....... ....... 

M: Detailed in- 
verse* 1 .752 .130 .130 

vere+(4305)2 (.4305) (.4458) (.4305) (.4862) (.4305) (.4862) 

.752 1 .083 .083 
.1919 ? (.4458)2 (.4458)(.4862) (.4458)(.4862) 

.130 .083 1 .689 
- .2093 - -.2167 + (.4862)2 (.4862)(.4862) 

.130 .083 .689 1 
.2093 - .2167 - .2364 + (.4862)2 

* Denominators below the main diagonal show products of numbers in denominators above the diagonal. 
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ISSUES IN MULTIPLE REGRESSION 607 

TABLE 4-Continued 

Matrix Correlations and Inverse of Correlations between byi sb,i I Independent Variables 

N. Correlations: . . .80 0.00 0.00 0.00 .386 .080 4.80 .001 
.80 .... 0.00 0.00 .10 .142 .081 1.76 N.S. 

0.00 0.00 .... ..80 0.00 .278 .079 3.49 .001 
0.00 0.00 .80 .... 0.00 .278 .079 3.49 .001 
0.00 .10 0.00 0.00 .... .486 .048 10.02 .001 

N: Inverse. 2.829 -2.286 0.000 0.000 .229 ....................... ........ 
-2.286 2.857 0.000 0.000 - .286 ....................... ........ 

0.000 0.000 2.778 -2.222 0.000 ............................... 
0.000 0.000 -2.222 2.778 0.000 ....................... ........ 
.229 - .286 0.000 0.000 1.029 ...................... ........ 

verse*. + 1 .804 0.000 0.000 -.134 
(.5946)2 - (.5946) (.5916) - (.5946) (.6000) - (.5946) (.6000) - (.5946) (.9858) 

.804 1 0.000 0.000 .167 
.3518 + (.5916)2 (.5916) (.6000) (.5916) (.6000) (.5916) (.9858) 

0.000 0.000 1 .800 0.000 
.3568 .3550 + (.6000)2 (.6000)(.6000) (.6000)(.9858) 

0.000 0.000 .800 1 0.000 
.3568 .3550 .3600 + (.6000)2 (.6000)(.9858) 

-.134 .167 0.000 0.000 1 
.5862 .5832 .5915 .5915 + (.9858)2 

we see that, since these elements always 
have 1.0 in the numerator, the difference is 
produced by the smaller residual standard 
deviations in the denominators of the more 
redundant pair, according to equations (4) 
and (5). 

The remaining within-subset elements, 
C12, C21, C34, and C43, have the same de- 
nominators as their main diagonal elements. 
This leaves the outcome to be determined 
entirely by the numerators of these remain- 
ing elements, the numerators of the main 
diagonal elements being fixed. These critical 
numerators consist of the partial correla- 
tions between members of the same subset. 
Since all other things (the between-subset 
zero-order correlations) are equal, the more 
redundant subset, with the higher zero- 
order correlations, has the higher partial 
correlation. Thus, in this example, the zero- 
order correlations of .89 and .86 give rise to 
the second-order partials of .76 and .70, re- 

spectively. This partial correlation deter- 
mines the quantity to be subtracted from 
the main diagonal elements and thus ac- 
counts for the fact that the more redundant 
subset always has the smaller regression 
coefficients. 

However, the principal demonstration of 
the present section has to do with the 
changes from .71 to .73 in some of the corre- 
lations in going from matrix L to matrix M. 
These changes drastically alter the relative 
sizes of the first two regression coefficients. 
For matrix M, byl.234 is only two-thirds as 
large as by2.134, which is also larger than the 
regression coefficients of the two less re- 
dundant variables, by3.124 and by4.123. Once 
again, the difference between the standard 
errors of byl.234 and by2.134 is negligible. Al- 
though none of the t-tests reaches sig- 
nificance in this example, it is evident, with 
such a substantial difference between the 
values of I for the first and second variables, 
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that the results of the test could easily 
straddle the threshold of significance for a 
similar problem with less overlap between 
all of the variables. The addition of a fifth 
variable, relatively unrelated to the rest, 
could also lower the standard errors enough 
to accomplish the same result. 

The fact that b,2.134 becomes larger than 
,. 2 3 4 can be traced to the difference be- 

tween the partial correlations in the nu- 
merators of C13, C14, C23, and C24. A potential 
for reversing the direction of this difference 
exists as a result of the difference between 
the residual standard deviations in the de- 
nominators of C1l and C22, the main di- 
agonal elements. This difference between 
the denominators-caused by the difference 
between R 234 and R2.134- favors b1.234 
being larger than b.2.134 instead of vice versa. 
The r,,i control the relative weighting of 
these two influences, according to equation 
(2); and if they were not all equal in the 
present case, the result could be quite dif- 
ferent. In our example, the influence of the 
partial correlations depends on r,3 and r, 
while that of the SMC's depends upon r.i 
and r,2. 

Because the changes to .73 in matrix M 
are symmetrical with respect to the third 
and fourth variables, they hardly affect 
b.3.124 and by4.123 at all. It is only the predic- 
tive value of the first two variables that is 
disturbed, and even this remains roughly 
constant in total (bl1.234 plus by2.134). Only 
its distribution between variables one and 
two is altered, as though the balance of pre- 
dictive value were tipped sharply in favor 
of variable two by the slight change intro- 
duced into the correlations. 

The third example in this series, matrix 
N, is intended to illustrate several things. 
First, it shows how a correlation that is rela- 
tively unimportant in appearance (.10 in 
this case), perhaps far distant in the matrix 
from the subset it is affecting and hence easy 
to ignore, can also bring this sharp tipping 
effect about. In this example, the values of I 
do straddle the conventional significance 
point, and the regression coefficient of the 

second variable is only 37 per cent as large 
as that of the first variable. Furthermore, 
the first variable is made to look more im- 
portant than the third and fourth variables, 
although its zero-order correlations are all 
identical to theirs. This greatly enhanced 
importance of the first variable comes about 
indirectly through a minor correlation of 
another variable (the second) with which the 
first just happens to be paired. 

Although the regression model assumes 
the correlations between independent vari- 
ables to be fixed, this viewpoint is of little 
comfort if the decision to adopt one rather 
than another of several quite different inter- 
pretations of the data depends heavily upon 
correlations that are statistically unreliable, 
substantively inconsequential, or both. For 
the disturbing correlation of .10 in the 
present example, and an assumed sample 
size of 100, the .95 confidence interval 
ranges from -.10 to .28. In the case of the 
real data upon which this example is based, 
the four correlations between the two sub- 
sets all had different values, ranging from 
.68 to .76. With a real sample size of 155, 
none of the relevant comparisons between 
those correlations is statistically significant, 
yet their differences would influence strong- 
ly the outcome of a regression analysis in 
which they were the correlations for the 
independent variables. In a case like this, 
where all four of the between-subset correla- 
tions have different values, to the extent 
they fail to tip one subset because the r2,i of 
the other subset are small relative to the ri 
of the first, they can more easily succeed in 
tipping the other subset, for which the 
relevant ri will then be large. 

It should not be assumed, because of the 
large number of zero correlations that it con- 
tains, that the example of matrix N is in 
any way peculiar. Actually, the zeroes are 
conservative in their influence. If rl3, rl4, r23, 
and r24 (with their symmetrical counter- 
parts) were all changed from 0.0 to .60, for 
example, bl,.2345 would equal .553 and 
b1,2.1345 would equal .034, simply as the result 
of the .10 correlation. The second regression 
coefficient would then be only 6 per cent, 
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ISSUES IN MULTIPLE REGRESSION 609 

instead of 37 per cent, as large as the first. 
Clearly, the more highly all of the variables 
are correlated, the more accentuated the 
tipping effect. 

Of course, the more conspicuous the dis- 
turbing correlation, the stronger the tipping 
effect also-and the more justifiable the 
interpretations affected by it. Therefore, 
this aspect of the problem requires no fur- 
ther demonstration, since the difference be- 
tween .10 and zero is sufficiently compelling 
as an example of a trivial difference in corre- 
lations. But the within-subset correlations, 

bility lies with the Cii that occupy positions 
in the inverse matrix corresponding to the 
positions of the correlations between the 
subset members themselves-in the present 
example, C12 and C21. Other things remain- 
ing fixed, as the correlation between the 
first two variables increases, so will their 
partial correlation. Since this partial con- 
stitutes the numerator of C12 and C21, this 
means that the numerators of C12 and C21 
will approach the value of 1.0 in the numera- 
tors of C11 and C22. And since, by definition, 
variables one and two are in the same sub- 

TABLE 5 

Row SUMS OF INVERSE OF MATRIX N (FOR by2.1345 AND byl.2345) AS 
A FUNCTION OF THE CORRELATIONS WITHIN SUBSETS, 

712, r2l, r34, AND r43* 

Rai, Sum for 
Correlations within Sub- Sum for Sum for R 4atio, by8.i2t5 

sets, n12= r21= 784= ?4 by2 .134b byl byl.2 and for 
bul. 2345 b1v4.1235t 

.10 .. e816 .918 .89 .909 

.20 .......... .737 .852 .86 .834 

.40 ............. .603 .759 .79 .714 

.60 ....... .476 .714 .67 .625 

.80 ............. .285 .772 .37 .556 

.90 . 0.000 1.000 .00 .526 

.99 . ...... -9.091 10.000 - .91 .502 

* Row sums are given because of the difficulty of finding a value of ryi that would 
serve for all of the examples and yet not violate the restrictions on consistency between 
correlations. The ratios between these sums, of course, are the same as the ratios be- 
tween actual regression coefficients, given that all of the ri within each separate problem 
are equal. 

t The sums for these two coefficients are identical, of course. 

rl2, r21, r34, and r43, could be other than .80, 
which is a rather high correlation. What 
happens to the tipping effect when various 
other possible values are substituted for the 
.80 correlations in matrix N is explored, 
therefore, in Table 5. This table shows that 
the more highly correlated the variables in 
question, the more susceptible they are to 
being tipped. If in all these cases we regard 
the difference between a correlation of zero 
and a correlation of .10 as the cause, then it 
is clear that the magnitude of the effect can 
range rather widely; throughout most of this 
range, however, we would regard the effect 
as disproportionate to the cause. 

The reason for this increasing suscepti- 

set, they will tend to have similar SMC's, 
and hence the denominators of all four of 
these elements will tend to be close in value. 
Taken together, these factors cause C12 and 
C21 to approach Cul and C22 in absolute 
value. Subtraction of the former pair from 
the latter pair thus tends more and more- 
as the within-set correlations increase-to 
cancel entirely the contribution of the main 
diagonal elements to the row sum, leaving 
this sum to be determined more and more 
fully by the partial correlations in the 
numerators of the remaining Cij of these 
rows. 

These remaining Ci,-in the present ex- 
ample only C15 and C25, since C13 = C14 = 
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C23 = C24 =- 0.0-also react to the above 
changes so as to enhance the tipping effect. 
First of all, we shall look at their denomina- 
tors. 

As the correlation between the first two 
variables increases, naturally so do the 
SMC's of both, leading to smaller residual 
standard deviations in the denominators 
of all of the elements in their rows and 
columns. This gives greater weight to the 
partials in the numerators of the remaining 
Cii, making these C,j larger in size. Any 
difference between the partials of the first 
row and the partials of the second row is 
then reflected in a larger difference between 
Cl1 and C2j. This effect is especially telling 
whenever Clj and C2j are opposite in sign, 
as are C15 and C25 in the example of 
matrix N. 

Granting that the partial correlations in 
the numerators of the remaining Cij will 
seldom be of the first order, the way in 
which they are affected can best be sug- 
gested by examining the most influential 
first-order partial for r15, namely, r15.2, and 
the numerator of the usual formula for 
calculating this partial, r15 - rl2r25 = 0.0 - 

(.80)(.10). Clearly, as the within-subset cor- 
relation r12 increases, this entire expression 
will become increasingly negative, leading 
to an increasingly positive Cm5 (see eq. [7]). 
C25, on the other hand, will remain negative, 
because the numerator of r25.l, its own cor- 
responding partial, which is r25 - rl2r15 = 
.10 - (.80)(0.0), remains positive. (The 
denominators of the pairs of partials we are 
examining are virtually identical, and so 
they can be ignored.) 

Although tipping is apt to be especially 
strong when these Cij elements become 
opposite in sign (note the effect of C15 and 
C25 on their row sums in matrix N), the ef- 
fect does not require this opposition. In the 
case of the previous example, matrix M, the 
tipping effect did not depend upon any sign 
changes. For that matrix, relevant illustra- 
tions would be for the numerators of, say, 
elements C13 and C23. (C14 and C24 behave 
identically to these two.) For the appropriate 
first-order partials, rl3.2 and r23.1, the respec- 

tive numerators would appear as follows: 
r13 - r12r23 = .73 - (.89)(.71) = .098; and 
r23 - r12r13 = .71 - (.89)(.73) = .060. Al- 
though .098 and .060 are both small and 
positive, and the difference between them is 
also extremely small, it is their ratio that 
counts. This ratio, of .060 to .098, is .612- 
almost exactly the same as the ratio of .614 
of C23 to C13 (that is, of -.382 to -.622) in 
this matrix. (Although our point is that the 
numerators of these first-order partials al- 
most entirely determine the numerators of 
C13 and C23, and that the latter numerators 
are chiefly responsible for the difference be- 
tween C13 and C23, that .612 is as close as 
it is to .614 is partly due to coincidence. 
Generally, although close, these values 
would not be so nearly identical.) The other 
first-order partials for these Cii, r13.4 and 
r23.4, are much less influential. The ratio be- 
tween their numerators, for example, r13 - 
r14r34 = .73 - (.73)(.86) = .102 and r23 - 
r24r34= .71 - (.71)(.86) = .099, is .973. 
This is so close to 1.0 that it would tend 
to produce almost identical values for C13 
and C23. These examples indicate how 
susceptible some analyses are to being 
strongly influenced by even the most minute 
changes in the detailed inverse matrix. 

The interested reader will also note the 
additional small assist given to C13 and C14 
of matrix M from having .4305 as a factor 
in their denominators instead of the .4458 
of C23 and C24. This stems from the higher 
SMC of variable one, of course. 

Returning to matrix N and Table 5, we 
note that eventually by2.1345 passes through 
the zero point and becomes negative. When 
the within-subset correlations are in the 
range .90-1.0, the absolute values of the two 
regression coefficients become extremely 
large. Their algebraic sum, however, remains 
practically constant. This illuminates the be- 
havior of multiple regression coefficients in 
curvilinear regression and another mistake 
that is sometimes made. 

Whenever a quadratic (curvilinear) com- 
ponent is introduced as a new independent 
variable into a correlation matrix, its ab- 
solute correlation with the linear component 
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of the same variable will be very high-usu- 
ally between .96 and .99. According to the 
effect of repetitiveness, the two components 
might be expected to divide the predic- 
tive value of either one alone approximately 
equally between them, with the addition of 
some small gain from the improvement in fit. 
This would yield regression coefficients for 
each component of the variable approxi- 
mately half the size of the linear compo- 
nent's alone, suggesting that there might be 
a problem in testing for significance with 
the usual t-test. 

However, because of the susceptibility of 
two such highly correlated predictors to 
both the tipping effect and the effect of un- 
equal correlation with the dependent vari- 
able (which occur despite the near perfect 
correlation), this neat division of the predic- 
tive value into two equal parts is unlikely to 
come about. Instead, one component will 
have either slightly lower correlations than 
the other with the remainingindependent 
variables, or a slightly greater correlation 
with the dependent variable, or both, and 
the predictive value of the pair will tip 
markedly in its favor. Because of the pair's 
extremely high correlation, and the fact that 
these two effects are so potent, one of the 
two regression coefficients is usually passed 
right through the zero point to assume a 
high negative value, whereas the other as- 
sumes a high positive value. Although the 
algebraic sum of the two exceeds that of the 
one only to the extent there is an improve- 
ment in fit, both coefficients become much 
larger in absolute value than the regression 
coefficient of the linear component alone, 
leading to the superficial impression that 
with allowance for curvilinearity the true 
importance of the predictor has been un- 
covered. 

In this situation, the appropriate sta- 
tistical test compares the error sum of 
squares from the curvilinear analysis with 
the error sum of squares from the non- 
curvilinear analysis to see whether the 
former is significantly smaller than the 
latter. In effect, the predictor's two regres- 
sion coefficients in the curvilinear analysis 

are tested at one stroke, rather than indi- 
vidually, as with the usual t-test, which 
would be wrong to apply in this case."5 

Let us return to matrix N one last time 
in order to say a word about the effect of 
negative and zero correlations. It is well 
known that most social science correlation 
matrixes are entirely positive, or can be 
made so by reflecting the appropriate vari- 
ables. However, exceptions can occur. When 
they do, the effect of a negative correlation 
on the multiple regression can be much 
stronger than its absolute magnitude would 
lead one to expect. Some zero correlations, 
seemingly innocent in appearance, have the 
same result. Take, for example, the zero 
correlation, r15, in matrix N. It occurs be- 
tween two variables, one and five, that are 
both correlated in the same direction with 
the same other variable, namely, variable 
two. The fact that their joint positive cor- 
relations with two are not reflected in a 
positive correlation between them indicates 
that they both contain variance that is nega- 

15 Lander appears to have tested these two com- 
ponents in his curvilinear analysis with the t-test, 
as though they were independent regression co- 
efficients, because he reports different levels of sig- 
nificance for the two. The correct test would yield 
only one level of significance, and it would apply 
simultaneously to both components. The correct 
test, incidentally, continues to reject the hypothesis 
of non-curvilinearity for Lander's data-tentative 
exploration with the wrong test suggests that it 
lacks power, so that when it is significant the cor- 
rect test will be significant too. (We are indebted to 
Leon J. Gleser for looking into this question of 
power.) Lander made much of the curvilinear rela- 
tionship between delinquency and percentage non- 
white. It seemed to him to indicate that delinquency 
was at a maximum in census tracts that were more 
heterogeneous, because anomie was greater there. 
Although our findings concerning the fact of curvi- 
linearity concur with his, this does not imply any 
indorsement of his interpretation of the shape of the 
curve or of its cause. Because our delinquency rate 
data are only close approximations of his (see Gor- 
don, op. cit.), and it is difficult in any case to follow 
his description of what he did, no attempt was made 
to check this part of his analysis in more detail. For 
a good discussion of tests of regression coefficients, 
see Jerome C. R. Li, Statistical Inference II; the Mul- 
tiple Regression and Its Ramifications (Ann Arbor, 
Mich.: Edwards Bros., Inc., 1964), pp. 185-86. 
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tively correlated between them, so that the 
total correlation averages out to zero. Since 
one and five both correlate with two in the 
same direction, the only way they can con- 
tain mutually negatively correlated vari- 
ance, without altering the sign of either r12 
or r25, is if it is in a direction orthogonal to 
that component of two's variance expressed 
in its correlations with both of them. Since 
both one and five contain variance that is 
orthogonal to two, the presence of this vari- 
ance reduces their correlations with two be- 
cause it constitutes a part of their total 
variance tlhat two cannot possibly account 
for. Consequently, when either is partialled 
out of the relationship the other has with 
two, the partials become larger than the ob- 
served zero-order correlations, r12 and r25. 
And when two is partialled out of r15, the 
partial becomes negative, thus giving rise 
to a positive C15. Had r15 been negative in- 
stead of zero, all of these statements would 
still apply, only more strongly. 

The best way to visualize these relations 
is to imagine all three variables located with 
respect to two orthogonal factors. Variable 
two would lie collinear with one factor, and 
variables one and five would lie 90 degrees 
apart from each other (if uncorrelated; if 
negatively correlated, between 90 and 180 
degrees apart), one loading positively and 
the other negatively on the second factor. 
Variable two would lie between them, form- 
ing acute angles with both. Variables one 
and five thus cancel the second factor's vari- 
ance in each other, in effect rotating each 
toward the first factor and strengthening the 
correlation of each with two. In this type of 
situation, one and five play the role of sup- 
pressor variables with respect to each other, 
suppressing the contaminating variance of 
the second factor.'6 

Because correlations like r15, especially 
when negative, cause other correlations in 
their row and column to be in effect higher 
than they appear to be (that is, the relevant 

first-order partials are higher than the zero- 
orders), they are thus capable of creating 
situations of much higher redundancy than 
the unwary investigator might realize. 
Therefore, it is necessary to be aware of 
their possible presence and of what they can 
do, should one wish to inspect a matrix to 
see to what extent it might be subject to 
the effects that have been described in this 
paper. These suppressor relations could, for 
example, drastically increase susceptibility 
to tipping, or cause tipping in a direction 
opposite to that which one might ordinarily 
expect on the basis of the zero-order correla- 
tions. 

In the examples of matrixes L, M, and N, 
it so happens that the tipping effect works 
to diminish the apparent importance of the 
variable with the higher SMC. Consequent- 
ly, even if the magnitude of the effect seems 
excessive, at least its direction appears 
to conform to one's expectations concerning 
the outcome of partialling, namely, that the 
most overlapping variable will usually be 
the most adversely affected. In order to 
dispel any impression that this is necessari- 
ly always the case, we present matrix Z, in 
Table 6. After inspecting this matrix, it may 
come as a surprise to some that the first 
variable possesses the highest SMC. Not 
only is this true, but it is also the variable 
that benefits most from the strong tipping 
effect induced by having set r14 equal to 
zero instead of .10. 

GENERAL COMMENTS ON MULTIPLE 
REGRESSION 

The examples in the preceding section 
show that small variations among the corre- 
lations of a highly related set can create 
large variations among their regression co- 
efficients. It is hard to imagine any substan- 
tive importance that could be attached to 
such small differences between correlations, 
yet data analysts are quite apt to attach 
substantive importance to the larger differ- 
ences between regression coefficients that 
they produce. Particularly likely to be mis- 
leading are those comparisons between re- 
gression coefficients that pit a variable 

16 For a good discussion of suppressor variables 
and multiple regression, see J. P. Guilford, Funda- 
mental Statistics in Psychology and Education (New 
York: McGraw-Hill Book Co., 1965), pp. 403-8. 
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winning the sharp internal competition 
within one such subset against a losing 
variable from some other similarly com- 
petitive subset. When this happens, the 
zero-order difference between the two can 
be either exaggerated or minimized. Which. 
ever way it goes, the outcome will be deter- 
mined by considerations that have little to 
do with the relation between the two 
variables. Instead, it will reflect mainly each 
of their relations to separate sets of other 
variables-often, quite trivial aspects of 
those relations. 

The generally accepted view that partial 
regression coefficients express the relative 
importance of variables has contributed to 
this uncritical way of looking at them by its 
not having taken sufficient account of the 

efficients are not immutable and that they 
can be greatly affected by changes in the 
selection of independent variables to be in- 
cluded in an analysis. They have continued, 
however, to regard regression coefficients as 
being meaningful within the context of the 
particular problem in which they appear. 
Our attempts to describe the inner workings 
of regression showed four ways in which 
this assumption could be seriously in error. 
Even for a given set of variables, there is a 
sense in which the comparisons being made 
can be grossly unfair and misleading. 

The question naturally arises as to 
whether there are any conditions under 
which the effects that we have described do 
not matter. It is certainly clear that as the 
level of correlation and the number of vari- 

TABLE 6 

MATRIX Z 

(ryi = .50; N = 100) 

Variable Correlations between Independent Variables SMC by; Sbi I p < 

1. . . . .80 .80 .00 .719 .34 .14 2.5 .02 
2.80 . 8 ... .80 .10 .714 .10 .13 0.7 N.S. 
3. .80 .80 ... .10 .714 .10 .13 0.7 N.S. 
4..... 00 .10 .10 ... .038 .48 .07 6.6 .001 

nature of that importance. Oftentimes, 
what is actually being compared, if any- 
thing, is the local importance of a variable 
in its own domain with the local importance 
of another variable belonging to some other 
domain. It is quite doubtful that sociologists 
are always seeking such a domain-bound 
conception of importance whenever they 
employ this method. Furthermore, as the 
examples show, even comparisons between 
variables within the same domain or subset 
can be extremely sensitive to minor dis- 
turbances. Adding to the confusion is the 
fact that the method itself does not dis- 
tinguish between comparisons that are sensi- 
tive to local contexts and those that reflect 
more uniformly the total context of all of 
the independent variables. 

For some time now, sociologists have 
been aware that the values of regression co- 

ables increase, conditions become more 
critical. Especially as the number of vari- 
ables increases, the rationale for the presence 
of any particular variable is apt to grow 
more tenuous. Unlike factor analysis, multi- 
ple regression is not an all-purpose method 
for data reduction.'7 If posed in terms of 
levels of correlation between independent 
variables, we suspect that the answer to the 
question is that when the correlations are so 
low that they do not matter, then partial- 
ling itself will not matter and a zero-order 
analysis would serve as well. 

In a more important form, the same ques- 
tion is raised again by the many examples of 

17 Analyses such as Chilton's, for example, which 
employs eighteen independent variables and uses 
highly correlated census tract data, are almost cer- 
tainly of no practical value (see Chilton, op. cit., 
p. 80). 
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regression having been successfully applied 
in other fields, such as economics. Apparent- 
ly, the manner in which these fields employ 
regression must differ, in some fundamental 
way, from its less sophisticated use in 
sociology. Much of this success is accounted 
for by studies that employ regression for 
predictive purposes only. Although predic- 
tion often entails making comparisons be- 
tween regression coefficients, the criticisms 
set forth here do not apply in their case. 
This is because those comparisons are in- 
tended to achieve pragmatic rather than 
theoretical objectives. Their aim is to elimi- 
nate superfluous variables rather than to 
test theoretical hypotheses. However, many 
other studies plainly do seek a better under- 
standing of the relations between variables. 
The following examples of this may help us 
to understand why they do not run afoul 
of misleading effects. 

Cows, acres, and men were employed as 
independent variables in a study of dairy 
farm income. The regression coefficients 
showed them to be important in the order 
listed. Nonetheless, it is absolutely clear 
that no matter what the rank order of cows 
in this problem, and no matter how small its 
regression coefficient turned out to be, no 
one would claim that cows are irrelevant to 
dairy farm income. One would as soon con- 
ceive of a hog farm without hogs. Although 
men turned out to be the factor of produc- 
tion that was least important in this prob- 
lem, no one would claim either that men are 
not in fact essential.18 

Another study examined various body 
measurements, together with age, sex, and 
race, in order to arrive at size standards for 
children's clothing. Height and girth at hips 
were found to be most important, with age 
contributing no net effect. It is part of the 
charm of this example that the more tauto- 
logical elements emerged, and rightfully so, 
at the expense of the fundamentally more 
causative variable. Even so, no one would 

argue, on the basis of this finding, that a 
child's body size is unrelated to his age.'9 

The relatively strong theory that sur- 
rounds the zero-order relationships in this 
pair of examples contributed to their suc- 
cess in two ways. First, it prevented the in- 
vestigators from mistakenly dismissing some 
variables as being of no theoretical im- 
portance, had they been tempted to do so.20 
Second, it meant that the zero-order rela- 
tionships were so thoroughly understood 
that the investigators really did intend to 
move beyond them into the more intimate 
analysis of partialling. The decision to 
operate at this microscopic level means that 
one is interested in differences between vari- 
ables no matter how highly correlated and 
similar they may be.2' 

These observations lead us to conclude 
that successful work with regression co- 
efficients is characteristically pitched at the 
finer of the levels of distinctness distin- 
guished earlier in this paper. Consequently, 
the advantages of strong theory and of 
understanding, if indeed these are separable, 
would always be present. This conclusion is 
consistent with the views of Ezekiel and 
Fox, who stress over and over the necessity 
for "careful logical analysis, and the need 
both for good theoretical knowledge of the 
field in which the problem lies and for 
thorough technological knowledge of the 
elements involved in the particular prob- 
lem."22 Furthermore, workers in other fields 

18 Mordecai Ezekiel and Karl A. Fox, Methods of 
Correlation and Regression Analysis (New York: 
John Wiley & Sons, 1959), p. 181. 

19 Ibid., p. 454. See especially chap. xxv, which 
contains many other examples. 

20 Lander, for example, dismissed the importance 
of SES in relation to delinquency, not realizing that 
the reason his SES variables failed to produce sig- 
nificant regression coefficients was that they were 
so repetitively and redundantly represented (see n. 
3 above). Had the theoretical connection between 
SES and delinquency been as strong, say, as that 
between age and size of child, he would have been 
forced to think twice before writing off the relevance 
of SES. 

21 Had Lander deliberately aimed at such a fine- 
grained analysis, it would not have occurred to him 
to dismiss anything. 

2 Op. cit., p. 458. See also p. 432, where they 
counsel years of experience with the type of data to 
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seem to be more aware than sociologists are 
of the pitfalls in regression analysis. This is 
reflected in efforts in those fields to develop 
techniques that go beyond simple examina- 
tion of the regression coefficients. Thus, 
with the recent and important exception of 
Blalock's work, there has been nothing in 
sociology like Wright's path coeffcients in 
biometrics or Frisch's exhaustive bunch 
maps in econometrics.23 Merely processing 
one's data through a stepwise regression 
routine guarantees nothing in the way of 
protection. It may in fact induce a false 
sense of security. Although a stepwise 
analysis does examine an important subset 
of all of the relations between variables, and 
any additional information is apt to be help- 
ful, of itself it is no substitute for under- 
standing of the depth recommended by 
Ezekiel and Fox. The advantage of the more 

sophisticated techniques appears to lie in 
the production of just this kind of under- 
standing, rather than in some mechanical 
but ingenious circumvention of the prob- 
lems connected with ordinary regression co- 
efficients. Through this increased under- 
standing, the investigator is led naturally 
toward working at the finer level of distinct- 
ness, even if this had not been his original 
intention.24 

Lest there be some misunderstanding, let 
us make absolutely clear that we have not 
been condemning the method of multiple 
regression in general. There remain many 
situations in sociology for which regression 
is an excellent tool of analysis.25 We do con- 
demn, however, those applications of re- 
gression coefficients that seek to determine 

be investigated. Other, special uses of regression, to 
which our criticism is not meant to apply, are cited 
in chap. xxiv. Norman Draper and Harry Smith 
are equally emphatic about the need for under- 
standing. See chap. viii, which is excellent, in their 
Applied Regression Analysis (New York: John 
Wiley & Sons, 1966). Their chap. vi is also the best 
discussion we know of the various stepwise pro- 
cedures. 

23 Since this paper was first drafted, Otis Dudley 
Duncan has revived interest in path coefficients. 
See his "Path Analysis: Sociological Examples," 
American Journal of Sociology, LXXII, No. 1 
(1966), 1-16. In addition to Duncan's paper, biblio- 
graphic references to Sewall Wright's work may be 
found in Blalock, Causal Inferences, p. 193; and in 
John W. Tukey, "Causation, Regression, and Path 
Analysis," Statistics and Mathematics in Biology, 
ed. Oscar Kempthorne and Others (Ames: Iowa 
State College Press, 1954), chap. iii. On bunch maps, 
see Ragnar Frisch, Statifical Confluence Analysis by 
Means of Complete Regression Systems (Oslo: Uni- 
versity Institute of Economics, 1934). For a recent 
application of bunch maps, see Richard Stone, The 
Measurement of Consumers' Expenditure and Be- 
havior in the United Kingdom, 1920-1938 (Cam- 
bridge: Cambridge University Press, 1954), Vol. I, 
esp. chap. xix. Besides Stone, other discussions of 
Frisch's work and of alternative approaches may be 
found in Tjalling Koopmans, Linear Regression 
Analysis of Economic Time Series (Netherlands 
Economic Institute No. 20 [Haarlem: De Erven F. 
Bohn N. V., 19371, Part II; and Harold T. Davis, 
The Analysis of Economic Time Series (Bloomington, 
Ind.: Principia Press, 1941), pp. 195-97. 

24True, had Lander, in the example we have 
criticized, been able to employ even stepwise 
analysis, he might have noted that after "owner 
occupancy" and "substandard housing," all five 
of the remaining variables together added less than 
1 per cent to the explained variance. This would 
have protected him from undertaking the analysis 
that he did-but it would also have changed the 
complexion of the problem and told him nothing 
concerning the five variables that were excluded. 
Furthermore, because a stepwise analysis will con- 
tinue to accept variables as long as they contribute 
a worthwhile increment to explained variance, it 
offers no protection against the effects described in 
this paper whenever the correlations between inde- 
pendent variables are low. Yet, those effects can still 
occur, albeit in a vastly attenuated form. Even ini 
the example of Lander's data, it would have ac- 
cepted two variables strongly saturated with SES. 
Both of them would have to split the predictive 
value of SES between them, in potential contrast to 
any additional worthwhile predictor representing 
some orthogonal domain all by itself. 

25 Many good illustrations of the flexibility of this 
method, and of applications of the general linear 
hypothesis, are to be found in Li, op. cit., and in 
Robert A. Bottenberg and Joe H. Ward, Jr., Ap- 
plied Multiple Linear Regression (Lackland Air 
Force Base, Texas: 6570th Personnel Research 
Laboratory, Aerospace Medical Division, Air Force 
Systems Command, 1963). The latter is especially 
valuable from the standpoint of instructing students 
and may be obtained from the U.S. Dept. of Com- 
merce, Clearinghouse for Federal, Scientific and 
Technical Tnformation, Springfield, Virginia 22151, 
by referring to the number AD 413 128 and enclos- 
ing a check for $2.75 made out to "National Bureau 
of Standards, CFSTI." 
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the relative importance of variables in the 
manner of the examples we have cited. 
Goldberger's comment on this practice is 
one of the best we have run across, and yet, 
we feel, it is worded not strongly enough: 
"The whole point of multiple regression ... 
is to try to isolate the effects of the individual 
regressors, by 'controlling' on the others. 
Still, when orthogonality is absent the con- 
cept of the contribution of an individual 
regressor remains inherently ambiguous."26 
This warning, furthermore, applies not just 
to regression analysis but to all the known 

control procedures, including those for cate- 
goric data and for experiments. 

At best, the foregoing remarks will prove 
helpful in avoiding technical errors. There is 
little that can be said, unfortunately, con- 
cerning the avoidance of theoretical errors. 
Even though investigators conscientiously 
consider what level of distinctiveness 
would be appropriate for an analysis, the 
possibility of committing all of the above 
fallacies will probably remain as an out- 
come of bad theorizing. Things regarded 
as similar may not be similar, and things 
regarded as different may not be different, 
Understanding means correct understanding. 
JOHNS HoPxINS UNIVERSITY 

26 Arthur S. Goldberger, Econometric Theory 
(New York: John Wiley & Sons, 1964), p. 201. We 
are grateful to Clinton S. Herrick for bringing this 
passage to our attention. 
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